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a b s t r a c t

Bursting neurons fire rapid sequences of action potential spikes followed by a quiescent period. The basic
dynamicalmechanismof bursting is the slow currents thatmodulate a fast spiking activity caused by rapid
ionic currents. Minimalmodels of bursting neuronsmust include both effects.We considered one of these
models and its relationwith a generalizedKuramotomodel, thanks to the definition of a geometrical phase
for bursting and a corresponding frequency. We considered neuronal networks with different connection
topologies and investigated the transition from a non-synchronized to a partially phase-synchronized
state as the coupling strength is varied. The numerically determined critical coupling strength value for
this transition to occur is compared with theoretical results valid for the generalized Kuramoto model.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Neurons are known to exhibit a plethora of dynamical behav-
iors, represented by the generation of action potential patterns.
One of such patterns is bursting, defined by the repeated firing of
action potentials followed by quiescent periods. Hence the dynam-
ics of bursting neurons has two timescales: a fast scale related to
spiking and a slow scale of bursting itself. These timescales are re-
lated to different biophysical mechanisms occurring at the level of
neuron membrane: there are fast ionic currents (chiefly Na+ and
K+) responsible for spiking activity and slower Ca++ currents that
modulate this activity.

Most neurons exhibit bursting behavior if conveniently stimu-
lated. For example, in the neocortical layer 5 pyramidal neurons,
when stimulated with DC current pulses, fire an initial burst of
spikes followed by shorter bursts (Blank & Stoop, 1999; Connors
& Gutnick, 1990). In layers 2, 3, and 4 chattering neurons fire high-
frequency bursts of 3–5 spikes with a short interburst period (Gray
&McCormick, 1996; Stoop et al., 2002). Cortical interneurons have
been found to exhibit bursting as a response toDCpulses (Markram
et al., 2004). Pyramidal neurons in the CA1 region of hippocampus
produce high-frequency bursts after current injection (Su, Alroy,
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Kirson, & Yaari, 2001). Thalamocortical neurons and reticular tha-
lamic nucleus inhibitory neurons exhibit bursting as well (Ram-
charan, Gnadt, & Murray Sherman, 2000). Purkinje cells in cere-
bellum can burst when their synaptic input is blocked (Womack
& Khodakhah, 2002). Bursting is also an important feature of sen-
sory systems, because bursts can increase the reliability of synap-
tic transmission (Krahe & Gabbiani, 2004). In some systems, bursts
improve the signal-to-noise ratio of sensory responses and might
be involved in the detection of specific stimulus features (Metzner,
Koch, Wessel, & Gabbiani, 1998).

Due to both synaptic coupling and common inputs among neu-
rons there are many types of synchronization, which can be gener-
ally regarded as the presence of a consistent temporal relationship
between their activity patterns (Elson et al., 1998; Makarenko &
Llinás, 1998; Varona, Torres, Abarbanel, Rabinovich, & Elson, 2001).
A strong form of the latter relationship is complete synchroniza-
tion, where neurons spike at the same time, i.e. a precise temporal
coincidence of events. A weaker relationship is bursting synchro-
nization, in which only the beginning of bursting is required to oc-
cur at the same time, even though the repeated spiking may not
occur synchronously.

There has been observed bursting synchronization in cell cul-
tures of cortical neurons, where uncorrelated firing appeared
within the first three days and transformed progressively into syn-
chronized bursting within a week (Kamioka, Maeda, Jimbo, Robin-
son, & Kawana, 1996). Large-scale bursting synchronization in the
7–14 Hz range has been found in the thalamus during slow-wave
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sleep, partially originated in the thalamus and gated by modula-
tory input from the brainstem (Steriade, McCormick, & Sejnowski,
1993). Various areas of the basal ganglia have been found to exhibit
bursting synchronization related to Parkinson’s disease and resting
tremor (Bevan, Magill, Terman, Bolam, & Wilson, 2002).

There exists sound neurophysiological evidence that hypoki-
neticmotor symptoms of Parkinson’s disease such as slowness and
rigidity of voluntary movements are closely related to synchro-
nized bursting in the 10–30 Hz range (Brown, 2007; Hutchison
et al., 2004; Park, Worth, & Rubchinsky, 2010; Uhlhaas & Singer,
2006). The connection between bursting synchronization and
pathological conditions like Parkinson’s disease, essential tremor
and epilepsy has led to the proposal ofmany control strategies aim-
ing to suppress or mitigate bursting synchronization (Hammond,
Bergman, & Brown, 2007).

One of such strategies is deep-brain stimulation (DBS), which
consists of the application of an external high-frequency (>100Hz)
electrical signal by depth electrodes implanted in target areas of
the brain like the thalamic ventralis intermedius nucleus or the
subthalamic nucleus (Benabid et al., 1991). The effect of DBSwould
be similar to that produced by tissue lesioning and has proved
to be effective in suppression of the activity of the pacemaker-
like cluster of synchronously firing neurons, and achieving a
suppression of the peripheral tremor (Blond et al., 1992). There is
strong clinical evidence that DBS is a highly effective technique for
treatment of patientswith Parkinson’s disease (Albanese &Romito,
2011; Rodriguez-Oroz et al., 2005).

In spite of these results, DBS is yet far from being completely
understood. Many results in this field have been obtained from
empirical observations made during stereotaxic neurosurgery, but
further progress can be obtained with proper mathematical mod-
eling of DBS (Hauptmann, Popovych, & Tass, 2005; Pfister & Tass,
2010; Tass, 2003). The effects of DBS in networks of bursting neu-
rons have been investigated when DBS is implemented through
an harmonic external current (Batista, Batista, de Pontes, Viana, &
Lopes, 2007) and a delayed feedback signal (Batista, Lopes, Viana,
& Batista, 2010).

On modeling the response of a neuronal network to an exter-
nal perturbation like DBS it is of paramount importance to keep
the model simple enough such that large-scale simulations (using
a large number of neurons) can be performed in a reasonable com-
puter time. In such reductionist point of view a minimal model
could be one in which we can assign a geometrical phase to the
bursting activity. The bursting neuron is thus regarded as a phase
oscillator undergoing spontaneous oscillations with a given fre-
quency (Rabinovich, Varona, Torres, Huerta, & Abarbanel, 1999).
Thus bursting synchronization becomes a special case of phase
synchronization, a phenomenonwell understood for coupled oscil-
lators with and without external excitation (Pikovsky, Rosenblum,
Osipov, & Kurths, 1997).

A simple model for the dynamics of nonlinearly coupled phase
oscillators is the Kuramoto model, which in its original version
considers a global (all-to-all) coupling (Kuramoto, 1984). It can
be generalized by considering an arbitrary coupling architecture
(generalized Kuramoto model) (Acebrón, Bonilla, Vicente, Ritort, &
Spigler, 2005). The particular interest in such models is that many
analytical and numerical results are known for them, specially the
global case for which a mean-field theory exists for the transition
between a non-synchronized to a (phase-)synchronized behavior
(Strogatz, 2000). For generalized Kuramoto models it is possible
to derive analytical expressions for the critical value of the cou-
pling strength for which the above mentioned transition occurs
(Restrepo, Ott, & Hunt, 2005). Hence such a body of knowledge
can be applied to networks of bursting neurons, helping to design
strategies of synchronization control and/or suppression like DBS.

The main goal of this paper is to show, using analytical and
numerical arguments, that a system of coupled bursting neurons

described by Rulkov’s model can be reduced to a generalized
Kuramoto model. This reduction is valid as long as phase synchro-
nization is concerned, since for frequency synchronization the be-
haviors can be quite different. We consider, in particular, some
widely used connection topologies, like random (Erdös–Rényi),
small-world, and scale-free networks. We show that the analyti-
cal results for the critical coupling strength to synchronized behav-
ior, originally derived for the generalized Kuramoto model, can be
used to describe the synchronization transition also for networks
of bursting neurons.

As a matter of fact, since bursting activity presents two
timescales it can be also approached from the point of view of a
relaxation oscillator (Wang, 2005). In our work, however, we de-
scribe bursting using a single phase. This simplification is justified
since phase synchronization of bursting is chiefly related to the
slow timescale. In other words, the fast spikes can be nonsynchro-
nized even though the slow dynamics is synchronized.

This paper is organized as follows: in Section 2 we describe the
model we used to describe bursting neurons. Section 3 considers
networks of coupled bursting neurons and introduces quantifiers
to characterize phase synchronization. Section 4 discusses differ-
ent connection architectures like global, random, small-world, and
scale-free networks. In Section 5 we review some results on the
generalized Kuramoto model, and Section 6 contains a mathemat-
ical discussion on the phase reduction near global phase synchro-
nization of a network of coupled neurons. Section 7 includes the
comparisons wemade between Kuramoto model and the network
of bursting neurons. Our Conclusions are left to the final Section.

2. Models of bursting neurons

The choice of a suitable model describing the dynamics of bio-
logical neurons is dictated by some requirements. First the model
must take into account the kind of dynamics onewishes to describe
(Ibarz, Casado, & Sanjuán, 2011). For example, if all one needs is to
describe a spiking neuron, for the sake of neural coding simulations
for example, a simple leaky integrate-and-fire (LIF) model would
be enough (Koch & Segev, 1999). However if one needs to describe
the interplay between different ionic currents flowing through the
neuron membrane, the Hodgkin–Huxley (HH) model would be a
natural choice (Hodgkin & Huxley, 1952). On the other hand, the
HH model would require far more computational power than the
LIF since the former involves four complicated first-order differen-
tial equations whereas the latter just one simple equation.

With bursting neurons this criterion also holds. Given that
bursting results from the interplay between fast and slow ionic
currents, Hodgkin–Huxley-type models would need at least one
more equation to describe slow Camodulation (Plant & Kim, 1976;
Shorten &Wall, 2000). A model of thermally sensitive neurons ex-
hibiting bursting has been proposed by Huber and Braun (Braun,
Eckhardt, Braun, & Huber, 2000; Braun et al., 2001; Braun, Hu-
ber, Dewald, Schäfer, & Voigt, 1998), which describes spike train
patterns experimentally observed in facial cold receptors and hy-
pothalamic neurons of the rat (Braun et al., 1999), electro-receptor
organs of freshwater catfish (Schäfer, Braun, Peters, & Bretschnei-
der, 1995), and caudal photo-receptor of the crayfish (Feudel et al.,
2000). However, the Huber–Braun model has 5 differential equa-
tions for each neuron, and computational limitations impose re-
strictions to its use for large networks (Prado, Lopes, Batista,
Kurths, & Viana, 2014).

If numerical simulations do not need to take into account
the effect of system parameters and only the phenomenological
aspects of bursting are relevant, then a good choice is the two-
dimensional mapping equations proposed by (Rulkov, 2001)

x(n + 1) =
α

1 + [x(n)]2
+ y(n), (1)

y(n + 1) = y(n)− σ x(n)− β, (2)
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