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a b s t r a c t

In recent years, complex-valued recurrent neural networks have been developed and analysed in-
depth in view of that they have good modelling performance for some applications involving complex-
valued elements. In implementing continuous-time dynamical systems for simulation or computational
purposes, it is quite necessary to utilize a discrete-timemodelwhich is an analogue of the continuous-time
system. In this paper, we analyse a discrete-time complex-valued recurrent neural network model and
obtain the sufficient conditions on its global exponential periodicity and exponential stability. Simulation
results of several numerical examples are delineated to illustrate the theoretical results and an application
on associative memory is also given.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In the recent decades, complex-valued neural networks (CVNNs
for short) that can directly handle complex-valued elements have
been developed and analysed in-depth.

CVNNs, as an extension of real-valued recurrent neural
networks, have complex-valued states, connections weights and
activation functions. In many engineering applications, such
as adaptive signal processing, communication engineering and
medical imagine, the inputs and outputs of a system are presented
as complex-valued elements. In such cases, CVNNs are well suited
to handle these applications. Besides, CVNNs can solve some
problems that cannot be solved by real-valued recurrent neural
networks, see Nitta (2003). In the past few years, the study
of CVNNs is a fast growing area, including learning algorithm,
engineering optimization, image processing, pattern recognition
and so on, see Aizenberg and Moraga (2007), Aizenberg, Moraga,
and Paliy (2005), Aizenberg, Paliy, Zurada, and Astola (2008),
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The dynamics of recurrent neural networks are frequently
studied in recent years, see Cao and Wang (2003), Cao and Chen
(2004), Cao and Wang (2005a, 2005b). When implementing the
continuous-time neural networks for simulation, experimentation
or computation, it is essential to construct a discrete-time
neural network which is an analogue of the continuous-time
neural network. Some researchers have discussed the significance
for discrete-time analogues to reflect the dynamics of their
continuous-time counterparts Mohamad and Naim (2002), Stuart
and Humphries (1996). It is usually expected that the dynamical
characteristics of the continuous-time systems pass to their
discrete-time analogues. Although there are numerous ways of
obtaining discrete-time neural networks from continuous-time
neural networks, most of the discrete-time neural networks
do not faithfully preserve the dynamics of their continuous-
time counterparts. As pointed out in Hu and Wang (2006), the
discretization cannot preserve the dynamics of the continuous-
time counterpart even for a small sampling period, and therefore
there is a crucial need to study the dynamics of discrete-time
neural networks.
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A commonly used method in the formulation of a discrete-
time analogue is discretizing the continuous-time system, see
Mohamad andGopalsamy (2000), Sun and Feng (2004), Yan (2011).
Certainly, the discrete-time analogue when derived as a numerical
approximation of continuous-time system is desired to preserve
the dynamical characteristics of the continuous-time system. Once
this is established, the discrete-time analogue can be used without
loss of functional similarity to the continuous-time system and
preserving any physical or biological reality that the continuous-
time system has. The analysis and application of recurrent neural
networks rely crucially on the stability and periodicity of the
neural networks. Thus it is necessary and significant to study the
dynamical behaviours of CVNNs. In recent years, the dynamical
behaviours of some discrete-time CVNNs have been analysed, see
Bohner et al. (2011), Du, Li, and Xu (2013), Duan and Song (2010),
Hu and Wang (2002), Huang and Zhang (2010), Liu et al. (2009),
Rao and Murthy (2008), Wang, Lu, and Chen (2009), Zhang, Yi,
Zhang, and Heng (2009) and Zhou and Zurada (2009). However,
the discrete-time analogues of continuous-time CVNNs are rarely
studied.

In this paper, we use the semi-discretization technique to
obtain discrete-time analogues of continuous-time CVNNs and
study their global stability and exponential periodicity. The rest
of the paper is organized as follows: In Section 2, we give the
model description and some useful notations, definitions and
lemmas. In Section 3, we present the sufficient condition for global
exponential periodicity of discrete-time CVNNs with two types
of activation functions and, as a result, we obtain the sufficient
condition for global exponential stability as a special case. A
numerical example is given in Section 4 to demonstrate the results.
In this section, we also present a discrete-time CVNN to memorize
the given patterns. Conclusion is given in Section 5.

2. Preliminaries

2.1. Notations

Let x ∈ R be a real number, then |x| denotes the absolute value
of x. Let z = x + iy ∈ C be a complex number, where i denotes the
imaginary unit, that is, i =

√
−1, x, y ∈ R be the real and imaginary

part of z, then |z| denotes the module of z, that is, |z| =

x2 + y2.

z∗ denotes the conjugate of z, that is, z∗
= x − iy.

Let z = (z1, z2, . . . , zn) ∈ Rn be an n-dimensional complex-
valued vector, where zi = xi + iyi (i = 1, 2, . . . , n). z∗ denotes the
conjugate transpose of z, that is, z = (z∗

1 , z
∗

2 , . . . , z
∗
n )

T. The vector
norm ∥z∥1 and ∥z∥2 (simply denoted by ∥z∥) are defined as

∥z∥1 =


i=1

(|xi| + |yi|), ∥z∥2 =


i=1

|zi|. (1)

For completeness we introduce the initial function space,
C([t0 − τ , t0],Ω), the Banach space of continuous functions φ :

[t0 − τ , t0] → Ω ⊂ Rn (Cn)with norm defined by

∥φ∥t0 = sup
−τ≤θ≤0

∥φ(t0 + θ)∥.

Let A = (aij)n×n be a complex-valued n × n matrix. AT denotes
the transpose of A. |A| denotes a matrix composed by the module
of each element of A, that is, |A| = (|aij|)n×n. As a special case, if
z = (z1, z2, . . . , zn)T is an n-dimensional complex-value vector,
then |z| = (|z1|, |z2|, · · · , |zn|)T. If A and z are degenerated to real-
valued matrix and vector, respectively, we can define |A| and |z|
similarly.

2.2. Model descriptions

In this paper, the discrete-time analogue of the following
continuous-time CVNN model is investigated:

ż(t) = −Dz(t)+ Af (z(t))+ Bg(z(t − τ))+ u(t) (2)

where z = (z1, z2, . . . , zn)T ∈ Cn is the state vector, D =

diag(d1, d2, . . . , dn) ∈ Rn×n with di > 0 (i = 1, 2, . . . , n)
is the self-feedback connection weight matrix, A = (aij)n×n ∈

Cn×n and B = (bij)n×n ∈ Cn×n are, respectively, the connection
weight matrix without and with time delays, f (z(t)) = (f1(z1(t)),
f2(z2(t)), . . . , fn(zn(t)))T : Cn

→ Cn and g(z(t − τ)) = (g1(z1(t −

τ1)), g2(z2(t − τ2)), . . . , gn(zn(t − τn)))
T

: Cn
→ Cn are the

vector-valued activation functions without and with time delays,
respectively, whose elements consist of complex-valued nonlinear
functions, τi (i = 1, 2, . . . , n) are constant time delays, u(t) =

(u1(t), u2(t), . . . , un(t))T ∈ Cn is the external input vector-valued
function with period ω.

In this paper, we consider two types of complex-valued activa-
tion functions satisfying the following two assumptions:

Assumption 1. fi(z) (i = 1, 2, . . . , n) can be represented by
separating into its real and imaginary part as:

fi(z) = f Ri (x, y)+ if Ii (x, y)

where f Ri (·, ·) : R2
→ R and f Ii (·, ·) : R2

→ R. For i = 1, 2, . . . , n,
there exists positive numbers λRRi , λRIi , λIRi and λIIi , such that for any
x, x′, y, y′

∈ R we have

|f Ri (x, y)− f Ri (x
′, y′)| ≤ λRRi |x − x′

| + λRIi |y − y′
|,

|f Ii (x, y)− f Ii (x
′, y′)| ≤ λIRi |x − x′

| + λIIi |y − y′
|.

(3)

Assumption 2. Let fi(·) (i = 1, 2, . . . , n) be a set of complex-
valued functions. For i = 1, 2, . . . , n, there exists positive constant
ξi such that for any z, z ′

∈ C , we have

|fi(z)− fi(z ′)| ≤ ξi|z − z ′
|. (4)

If activation functions gi(·) satisfy Assumption 1, then there
exists positive numbers µRR

i , µRI
i , µIR

i and µII
i , such that for any

x, x′, y, y′
∈ R we have

|gR
i (x, y)− gR

i (x
′, y′)| ≤ µRR

i |x − x′
| + µRI

i |y − y′
|,

|g I
i (x, y)− g I

i (x
′, y′)| ≤ µIR

i |x − x′
| + µII

i |y − y′
|.

(5)

If activation functions gi(·) satisfy Assumption 2, then there
exists positive constant κi such that for any z, z ′

∈ C , we have

|gi(z)− gi(z ′)| ≤ κi|z − z ′
|. (6)

By using a semi-discretization technique proposed inMohamad
and Gopalsamy (2000), we can obtain the discrete-time analogue
of the continuous-time CVNN (2).

CVNN (2) can be represented by separating it into its real and
imaginary part as:

ẋ = −Dx + ARf R(x, y)− AI f I(x, y)

+ BRgR(xτ , yτ )− BIg I(xτ , yτ )+ uR,

ẏ = −Dy + AI f R(x, y)+ ARf I(x, y)

+ BIgR(xτ , yτ )+ BRg I(xτ , yτ )+ uI .

(7)

where AR
= (aRij)n×n and AI

= (aIij)n×n are, respectively, the real
and imaginary part of A, BR

= (bRij)n×n and BI
= (bIij)n×n are,

respectively, the real and imaginary part of B, f R(x, y) =

(f R1 (x1, y1), f
R
2 (x2, y2), . . . , f

R
n (xn, yn))

T and f I(x, y) = (f I1(x1, y1),
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