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a b s t r a c t

This paper studies the problem of robust stability of dynamical neural networks with discrete time
delays under the assumptions that the network parameters of the neural system are uncertain and norm-
bounded, and the activation functions are slope-bounded. By employing the results of Lyapunov stability
theory and matrix theory, new sufficient conditions for the existence, uniqueness and global asymptotic
stability of the equilibrium point for delayed neural networks are presented. The results reported in
this paper can be easily tested by checking some special properties of symmetric matrices associated
with the parameter uncertainties of neural networks. We also present a numerical example to show the
effectiveness of the proposed theoretical results.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In the past years, dynamical neural networks have been used
to solve various engineering problems such as pattern recognition,
image and signal processing, optimization, associative memory
design, control and function approximation. In these classes
of engineering applications of neural networks, it is of great
importance to know the dynamical behaviors of neural networks.
In particular, equilibrium and stability properties of dynamical
neural networks play an important role in their design for solving
practical problems. For example, when a neural network is aimed
to solve some classes of optimization problems, it must be ensured
that this neural network has a unique equilibrium point which is
globally asymptotically stable. In order to accomplish a targeted
problem with neural networks, one has to establish the exact
modeling of neural networks. To this end, we have to take the two
critical parameters into account: time delays occurring due to the
finite speed of information processing and parameter uncertainties
due to the existence of external disturbances and parameter
deviations. When studying the stability of neural networks, the
affect of these parameters must be taken into account as they may
cause undesirable dynamical network behaviors such as oscillation
and instability. In recent years, global stability of delayed neural
networks under parameter uncertainties has been extensively
studied and various robust stability conditions for different classes
of delayed neural networks have been presented (Arik, 2014a,
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2014b; Banu, Balasubramaniam, & Ratnavelu, 2014; Cao, 2001;
Cao, Alofi, Mazrooei, & Elaiw, 2013; Cao & Ho, 2005; Cao, Ho,
& Huang, 2007; Cao, Huang, & Qu, 2005; Cao, Li, & Han, 2006;
Cao & Wan, 2014; Cao & Wang, 2005a, 2005b; Cao, Yuan, & Li,
2006; Ensari & Arik, 2010; Faydasicok & Arik, 2013; Feng, Yang,
& Wu, 2015; Guo, Wang, & Yan, 2014; Huang, Feng, & Cao, 2008;
Huang, Li, Duan, & Starzyk, 2012; Li, Chen, Zhou, & Qian, 2009;
Liang, Wang, Liu, & Liu, 2012; Lou & Cui, 2012; Mathiyalagan,
Park, Sakthivel, & Anthoni, 2014; Ozcan & Arik, 2014; Pradeep,
Vinodkumar, & Rakkiyappan, 2012; Qiu, Zhang, Wang, Xia, & Shi,
2008; Rakkiyappan, Balasubramaniam, &Krishnasamy, 2011; Shen
& Zhang, 2007; Singh, 2007; Wang, Li, & Huang, 2015; Wang,
Zhong, Nguang, & Liu, 2013; Wu, Shi, Su, & Chu, 2011; Yang, Gao,
& Shi, 2009; Zhang, Liu, & Huang, 2012; Zhang, Ma, Huang, &
Wang, 2010; Zhang, Wang, & Liu, 2008, 2009; Zhao, Zhang, Shen,
& Gao, 2012; Zhou, Xu, Zhang, Zou, & Shen, 2012; Zhu & Cao,
2010). One of the key factors in the robust stability analysis of
neural networks is to find an upper bound for the norm of the
intervalized interconnection matrices, and then apply it to the
robust stability analysis of neural networks. In some recent papers,
fourmajor upper bounds for the norm of the intervalizedmatrices,
are successfully used to derive some sufficient conditions for the
robust stability of neural networks. On the other hand, in Arik
(2014a), Arik (2014b), Banu et al. (2014), Cao (2001), Cao et al.
(2013), Cao and Ho (2005), Cao et al. (2007), Cao et al. (2005), Cao,
Li et al. (2006), Cao and Wan (2014), Cao and Wang (2005a), Cao
and Wang (2005b), Cao, Yuan et al. (2006), Ensari and Arik (2010),
Faydasicok and Arik (2013), Feng et al. (2015), Guo et al. (2014),
Huang et al. (2008), Huang et al. (2012), Li et al. (2009), Liang et al.
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(2012), Lou and Cui (2012), Mathiyalagan et al. (2014), Ozcan and
Arik (2014), Pradeep et al. (2012), Qiu et al. (2008), Rakkiyappan
et al. (2011), Shen and Zhang (2007), Singh (2007), Wang et al.
(2015), Wang et al. (2013), Wu et al. (2011), Yang et al. (2009),
Zhang et al. (2012), Zhang et al. (2010), Zhang et al. (2008), Zhang
et al. (2009), Zhao et al. (2012), Zhou et al. (2012) and Zhu and Cao
(2010), some special properties of generalmatrices have been used
to derive alternative robust stability results for neural networks
with time delays. Inspired by the results given in Arik (2014a), Arik
(2014b), Cao et al. (2005), Ensari and Arik (2010), Faydasicok and
Arik (2013), Ozcan and Arik (2014) and Singh (2007), we present
a new sufficient condition for robust asymptotic stability of the
equilibrium point for the class of delayed neural networks.

This paper is organized as follows. In Section 2, the delayed
neural network model with intervalized network parameters
is described. In Section 3, sufficient conditions for the global
robust asymptotic stability of interval neural networks with time
delays are derived by using Lyapunov stability and Homeomorphic
mapping theorems with respect to the slope-bounded activation
functions. in Section 4, a comparative numerical example is given
to demonstrate the effectiveness and applicability of the proposed
robust stability condition. Final sections give the concluding
remarks.

2. Preliminaries

In this section, we will first give some notations: through-
out this paper, the superscript T represents the transpose. I will
denote the identity matrix of appropriate dimension. Let x =

(x1, x2, . . . , xn)T . Then, |x| will denote |x| = (|x1|, |x2|, . . . , |xn|)T .
Let A = (aij)n×n be a real matrix. Then, |A| will denote |A| =

(|aij|)n×n, andλm(A) andλM(A)will denote theminimumandmax-
imum eigenvalues of A, respectively. If A = (aij)n×n is a symmetric
matrix, then, A > 0 will imply that A is positive definite. We also
note the following vector and matrix norms:

∥x∥2 =

 n
i=1

x2i , ∥A∥2 = [λmax(ATA)]1/2.

In this paper, we will study the robust stability of the delayed neu-
ral network of the following form:

dxi(t)
dt

= −cixi(t) +

n
j=1

aijfj(xj(t)) +

n
j=1

bij

× fj(xj(t − τj)) + ui, i = 1, 2, . . . , n (1)

which can be written in matrix–vector form as follows:

ẋ(t) = −Cx(t) + Af (x(t)) + Bf (x(t − τ)) + u (2)

where n is the number of the neurons, the variables xi(t) de-
note the states of the neurons at time t , the functions fi(·)
denote neuron activations, the constant parameters aij and bij
denote the weight coefficients between neurons j and i at time
t and t − τj, respectively; the parameters τj represent the time
delays the constants ui are the inputs to the neurons, and the
constants ci are the charging rates for the neurons, x(t) =

(x1(t), x2(t), . . . , xn(t))T ∈ Rn is the state vector, A = (aij)n×n,
B = (bij)n×n, C = diag(ci > 0), u = (u1, u2, . . . , un)

T
∈ Rn,

f (x(t)) = (f1(x1(t)), f2(x2(t)), . . . , fn(xn(t)))T ∈ Rn and f (x(t −

τ)) = (f1(x1(t − τ1)), f2(x2(t − τ2)), . . . , fn(xn(t − τn)))
T

∈ Rn.
The properties of the activation functions play an important role

in determining the stability conditions for neural networks. In this
paper, we will assume that the nonlinear activation functions fi(·)
are nondecreasing and slope-bounded. This class of functions is

denoted by f ∈ K and satisfies the condition that there exist some
positive constants ki such that

0 ≤
fi(x) − fi(y)

x − y
≤ ki, i = 1, 2, . . . , n, ∀x, y ∈ R, x ≠ y.

Since we aim to study the robust stability of neural system (1),
we must formulate the deviations in values of the entries of the
interconnection matrices of the neural networks. In general, it is
assumed that the perturbations of the network parameters are
bounded. Therefore, the matrices A = (aij)n×n, B = (bij)n×n and
C = diag(ci > 0) of system (1) are defined in the following
parameter ranges:

CI = [C, C] = {C = diag(ci) : 0 < c i ≤ ci ≤ c i,
i = 1, 2, . . . , n}

AI = [A, A] = {A = (aij)n×n : aij ≤ aij ≤ aij,
i, j = 1, 2, . . . , n} (3)

BI = [B, B] = {B = (bij)n×n : bij ≤ bij ≤ bij,
i, j = 1, 2, . . . , n}.

We will restate some previous literature results that will play an
important role in determining the main result of this paper:

Fact 1 (Cao et al., 2005). Let the A = (aij)n×n and B = (bij)n×n
satisfy (3). Then, there exist positive constants σ(A) and σ(B) such
that

∥A∥2 ≤ σ(A) and ∥B∥2 ≤ σ(B).

In the light of Fact 1, in Cao et al. (2005), Ensari and Arik (2010),
Faydasicok and Arik (2013) and Singh (2007), various upper bound
norms for the interval matrices defined by (3) were introduced.
We will unify the results given in Cao et al. (2005) Ensari and Arik
(2010), Faydasicok and Arik (2013) and Singh (2007) to state the
following lemma:

Lemma 1. Consider a real matrix B defined by B ∈ BI = [B, B] =

{B = (bij)n×n : bij ≤ bij ≤ bij, i, j = 1, 2, . . . , n}. Define B∗
=

1
2 (B+B), B∗ =

1
2 (B−B) and B̂ = (b̂ij)n×n with b̂ij = max{|bij|, |bij|}.

Let

σ1(B) =


∥ |B∗TB∗| + 2|B∗T |B∗ + BT

∗
B∗∥2

σ2(B) = ∥B∗
∥2 + ∥B∗∥2

σ3(B) =


∥B∗∥

2
2 + ∥B∗∥

2
2 + 2∥BT

∗
|B∗| ∥2

σ4(B) = ∥B̂∥2.

Then, the following inequality holds:

∥B∥2 ≤ σm(B)

where σm(B) = min(σ1(B), σ2(B), σ3(B), σ4(B)).

It should be pointed out here that there are no direct
relationships among σ1(B), σ2(B), σ3(B), σ4(B). It is possible to
establish four different cases where in each case σi(B) = σm(B),
for i = 1, 2, 3, 4.

Lemma 2 (Arik, 2014b). If A is a real matrix defined by A ∈ AI =

[A, A] = {A = (aij)n×n : aij ≤ aij ≤ aij, i, j = 1, 2, . . . , n}, then,
for x = (x1, x2, . . . , xn)T , there exist a positive diagonal matrix P and
a nonnegative diagonal matrix Υ such that the following inequality
holds:

xT (PA + ATP)x ≤ xT (P (A∗
− Υ ) + (A∗

− Υ )
T P

+ ∥P(A∗ + Υ ) + (A∗ + Υ )TP∥2)x

where A∗
=

1
2 (A + A), A∗ =

1
2 (A − A).
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