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1. Introduction

With the development of systems biology, genetic regulatory
networks received much attention. Genetic regulatory networks
can be modeled in quite different ways, such as differential
equations (Shen, Wang, & Liang, 2011; Wang, Lam, Wei, Fraser, &
Liu, 2008), Bayesian networks (Martinez-Rodriguez, May, & Vargas,
2008), and Boolean networks (BNs), (Kauffman, 1969).

Boolean network (BN) was first introduced by Kauffman (1969).
In a Boolean network, 0 (or 1) corresponds to the inactive (or
active) state of the gene. Every Boolean variable updates its state
according to a Boolean function, which is a logical function. Since
Boolean networks can provide a general description of the behavior
of many living organisms at system level, they have attracted much
attention in recent years. The topological structure of Boolean
networks including attractors and transient time has been studied
by Drossel, Mihaljev, and Greil (2005) and Samuelsson and Troein
(2003), etc. Recently, the study has been extended to Boolean
control networks, such as stability, controllability, observability,
optimal control, etc. (Cheng & Qi, 2009; Cheng, Qi, Li, & Liu, 2011;
Li & Sun, 2011, 2012; Li, Sun, & Wu, 2011; Li & Wang, 2012; Zhao,
Li, & Cheng, 2011; Zhao, Qi, & Cheng, 2010).

The synchronization problem consists of making two systems
oscillate in a synchronized manner, which can explain many nat-
ural phenomena. In the past decades, synchronization phenomena
have been investigated experimentally, numerically and theoreti-
cally by many researchers; see e.g. Huang and Feng (2009), Shen,
Wang, and Liu (2011, 2012), Su, Wang, and Lin (2009) and Zhu and
Cui (2010). Recently, interest has extended to synchronization of
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Boolean networks (BNs) (Li & Chu, 2012; Li, Yang, & Chu, 2012),
mostly due to their potential applications in biology, physics, etc.
For example, the study of synchronized BNs could provide useful
information on the coevolution of several biological species whose
genetic dynamics influence each other (Morelli & Zanette, 2001).

The complete synchronization of two delay-free deterministic
BNs has been studied in Li and Chu (2012). Later, the study
was further extended in Li et al. (2012), yielding complete
synchronization between two deterministic BNs with time delays
coupled in the drive-response configuration. However, we can note
that the time delays of every Boolean variables in Li et al. (2012)
are the same. Compared with (Li et al., 2012), temporal Boolean
network has more complex structure because temporal Boolean
networks allow the time delays in each Boolean variable to be
different. Hence, it is meaningful and challenging to investigate
complete synchronization of two temporal Boolean networks.
However, there has been no result studying the complete
synchronization of two temporal Boolean networks, to the best of
our knowledge.

Motivated by the above, in this letter, we focus on theoreti-
cal framework and strict analysis of complete synchronization be-
tween two temporal BNs coupled in the drive-response configu-
ration. The main tool in this letter is the semi-tensor product of
matrices, which can be used in many fields (Cheng, Qi, & Li, 2011;
Wang, Zhang, & Liu, 2012). Based on the semi-tensor product of
matrices, the algebraic representation of a temporal BN can be
obtained. Then necessary and sufficient conditions for complete
synchronization of two temporal BNs are obtained. Moreover, the
upper bound to check the criterion is given.

The rest of the letter is organized as follows. Section 2 gives a
brief review for the semi-tensor product of matrices. In Section 3,
main results on synchronization of drive-response temporal BNs
are presented. Necessary and sufficient conditions are obtained.
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Examples are given to show the non-emptiness of the obtained
results in Section 4. Finally, Section 5 presents the conclusions.

2. Preliminaries

In this section, we give a brief introduction of the semi-tensor
product (STP) and algebraic representation of Boolean functions
which are proposed first by Daizhan Cheng and his colleagues
(Cheng & Qi, 2010; Cheng, Qi, & Li, 2011).

2.1. Semi-tensor product of matrices

Definition 2.1 (Cheng, Qi, &Li,2011).ForM € R™"and N € RP*9,
their STP, denoted by M x N, is defined as follows:

M x N := (M ® Isn) (N ® I p),

where s is the least common multiple of n and p, and ® is the
Kronecker product.

STP is a generalization of conventional matrix product. All the
fundamental properties of conventional matrix product remain
true. Based on this, we can omit the symbol “x” if no confusion
raises. There are also some basic properties of STP; for detail, see
Cheng and Qi (2010) and Cheng, Qi, and Li (2011).

2.2. Algebraic representation of Boolean functions

We need some notations first.

(1) & :={1,0}

(2) A = {8}li = 1,2, ..., k}, where §} is the ith column of the
identity matrix Iy.

(3) Denote by 1,, a m-dimensional row vector whose entries are
equal to 1.

(4) We denote the ith column of matrix A by Col;(A) and denote
the set of columns of matrix A by Col(A).

(5) Denote by Mpwn the set of all m x n matrices. A matrix A €
Mmxn is called a logical matrix, if the columns of A are elements
of Ap,. Denote the set of logical matrices by .£; the set of n x s
logical matrices is defined by £;,s.

(6) Assume that there is a matrix M = [8/,82,...,85],
for notational compactness, we simply denote it as M =
Snlit, 2,y .oy ds).

Second, by identifying T = 1 ~ §),F = 0 ~ §3, then
the logical variable A(t) takes value from these two vectors, i.e.
A(t) € A= A, = {5, 82}

Next, some related results are collected in the following.

(1) A swap matriXx, Wy, which is an mn x mn matrix con-
structed in the following way: label its columns by (11, 12,
ooy In,..,ml,m2,...,mn) and its rows by (11,21,
...,ml, ..., 1n,2n, ..., mn).Thenits element in the position
(1, ), (i,))) is assigned as

~_J1, I=iandj =j,
W), i) = 0, otherwise.

When m = n, we briefly denote Wy, := W, ). To see the
properties of the swap matrix, we refer to Cheng and Qi (2010).

(2) The dummy matrix is defined as E; := §,[1, 2, 1, 2]. From
Cheng and Qi (2010), we have for any two logical variables u,
v,

Equv =v, or E;Wpuv=u.

(3) Let @, denote the 22" x 2" logical matrix
@, := Diag{slu, 8%, ..., 8%}
andleto € Ay;.Theno X 0 = &,0.

Finally, the following lemma is fundamental for the matrix
expression of the logical function.

Lemma 2.1 (Cheng, Qi, & Li, 2011). Let X1, ..., X, € D be n logical
variables and f(xy, ..., x,) a logical function. Then there exists a
unique matrix My € L£4on, called the structure matrix of f such that
in the vector form, we have

fx1, .o %) =M xIL X, X € A.

3. Main results

In this section, we will establish some necessary and sufficient
conditions for complete synchronization between two temporal
BNs.

3.1. Algebraic representation of temporal Boolean networks

In this letter, we consider two temporal BNs coupled in the
drive-response configuration with each network consisting of n
nodes. The dynamics can be described as

At +1) = fi(A(t), ..., An(), A (t = 1), ...,
An(f—1),...,A1(t—T1),...,An(t—f1)), (1)

Bi(t +1) = gi(A1(0), ..., A(t), Ayt = 1), ...,
At =1, .. At —11), ..., Ap(t — 1),
Bi(t), ..., By(t),B1(t —1),...,
By(t—1),...,Bi(t —12),...,By(t — 12)), (2)

i=1,2,...,n,

where A; and B; are the nodes of the drive BN (1) and the response
BN (2) respectively; f; : D"™+) — D andg; : D""1+2+2) 5 D
are Boolean functions; and 7; and 7, are time delays, which are
nonnegative integers.

In order to convert (1) into algebraic form, we define A(t) =
X Ai(6), x(t) = xilo z4i(t), where z,;(t) = A(t — i). Assume that
the structure matrix of f; and g; are M; and N; respectively, we can
express (1) as
Ai(t +1) = MJ A(DA(t — 1) - - - A(t — 71) = Mx(t). (3)
Multiplying the equations (3) together yields
At + 1) = Myx(t)Mox(t) - - - Mpx(t)

= Lix(t), (4)
where Col;(L1) = x[_, Col;(M;). Hence, the algebraic representa-
tion of the drive BN (]1) is
X(t+1) = 1zt +1) = Zgo(t + 1) -~ Zagy (£ + 1)

=A(t+DA{t)---At—11+ 1)

= Lix(HA{)---At— 11+ 1)

= L]W[anY2n(t1+1)]¢nr1A(t) H A(t -7+ 1)A(t — 'K])

= L] W[Z"TI ,zn(r1+1)](pnr1X(t)

£ Fx(t).

Similarly, defining B(t) = x[_, Bi(t), y(t) = x;2, zi(t), where
zpi(t) = B(t — i), we have
Bi(t + 1) = NA(HA({t — 1) ---A(t — 11)

B(t)B(t — 1) ---B(t — 12)
= Nix()y(t). (5)
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