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a b s t r a c t

The problem of assessing the performance of a classifier, in the finite-sample setting, has been addressed
by Vapnik in his seminal work by using data-independent measures of complexity. Recently, several
authors have addressed the same problem by proposing data-dependent measures, which tighten
previous results by taking in account the actual data distribution. In this framework, we derive some data-
dependent bounds on the generalization ability of a classifier by exploiting the Rademacher Complexity
and recent concentration results: in addition of being appealing for practical purposes, as they exploit
empirical quantities only, these bounds improve previously known results.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The estimation of the performance of a model is a key issue in
classification problems. Differently from asymptotic approaches,
Vapnik’s theory of Structural Risk Minimization (SRM) (Vapnik,
1998) allows one to target this problem in the finite-sample frame-
work. In particular, SRM exploits the cardinality of the training set
and the complexity of the hypothesis space for upper bounding the
generalization error of a classifier, so to allow the identification of
the optimal one.

The SRM proposes, for this purpose, a data-independent notion
of complexity, which allows to derive several upper bounds of the
generalization error of a model and are characterized by different
convergence rates, with respect to the number of available sam-
ples. As an example, a first result can be obtained for a hypothesis
spacewhere none of the classifiers is characterized by a probability
of error equal to zero (Vapnik, 1998, Section 4.1): in this pessimistic
case, the estimated error decays as O


n−1/2


. A second optimistic

result, instead, considers the case where the hypothesis space con-
sists of a finite number of models and at least one classifier has
probability of error equal to zero (Vapnik, 1998, Section 4.2): in
this case, the bound attains a convergence rate of O


n−1


, thus a

much quicker pace respect to the pessimistic case. Finally, a gen-
eral bound can be derived, which lies between the optimistic and
the pessimistic results (Vapnik, 1998, Section 4.3): the rate of con-
vergence of this general bound is O


n−β


, where the properties of
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the classifier affect the convergence rate, which can assume values
between slow (β = 1/2) and fast convergence (β = 1).

More recently, alternative data-dependent bounds have been
proposed, which can be studied by exploiting different approaches
(Anguita, Ghio, Oneto, & Ridella, 2011a, 2011b; Anthony, 2008) and
provide less conservative estimates of the generalization ability
of a model. These approaches work by building an hypothesis
space based on the actual available samples (Bartlett, Boucheron,
& Lugosi, 2002; Bartlett, Bousquet, & Mendelson, 2005; Bartlett
& Mendelson, 2003; Koltchinskii, 2001; Shawe-Taylor, Bartlett,
Williamson, & Anthony, 1998), instead of considering a worst-case
setting, like the classical SRM data-independent approach.

Several formulations of these bounds exist, which are charac-
terized by different convergence rates. The bound proposed by
Bartlett et al. (2005) and Shawe-Taylor et al. (1998), for example,
decays at a fast pace and can be considered a data-dependent op-
timistic result; however, its finite-sample behavior for small n is
very conservative (see for example Bartlett et al. (2005)) or the
bounds need additional hypothesis (see for example Srebro, Srid-
haran, and Tewari (2010)) in order to be applied, representing a
drawback, for example, when few tens of samples are available
(Anguita, Ghio, Oneto, & Ridella, in press; Anguita, Ridella, Riv-
ieccio, & Zunino, 2003; Braga-Neto & Dougherty, 2004; Magdon-
Ismail, 2010; Pochet et al., 2005). On the contrary, the upper bound
of the generalization error proposed by Bartlett and Mendelson
(2003) and Koltchinskii (2001) is characterized by a slow con-
vergence rate O(n−1/2). For this reason, it can be considered a
pessimistic result but, due to the fact that it is based on the well-
known Rademacher Complexity statistical tool, it can be efficiently
computed (Bartlett et al., 2002; Koltchinskii, 2001; Vapnik, 1999),
making it very appealing.

In this paper, our objective is to exploit some relatively new
concentration results by Boucheron, Lugosi, and Massart (2003,
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2000) and propose some improved and efficiently computable
data-dependent bounds, which are sharper than the pessimistic
data-dependent formulations proposed in Bartlett and Mendelson
(2003) and Koltchinskii (2001). In particular, despite being char-
acterized by the same slow asymptotical behavior O(n−1/2), our
bounds are sharper for small n, making them appealing in practi-
cal applications like, for example, error estimation of classifiers in
the small sample setting (i.e. when small cardinality sets are avail-
able, e.g. see Anguita et al. (in press) and Braga-Neto andDougherty
(2004)). Furthermore, we show that these improved bounds con-
tain explicitly both slow and fast convergence terms and the for-
mer ones are controlled by the classification performance of the
model. In other words, we move a first step towards the identifi-
cation of an effectively computable data-dependent general result,
with varying convergence rate between O(n−1/2) and O(n−1).

For such purposes, we briefly recall the learning framework in
Section 2 and, after having propaedeutically recalled in Section 3.1
the well-known results of Bartlett and Mendelson (2003) and
Koltchinskii (2001), we improve them in Sections 3.2 and 3.3.
Finally, in Section 4, we propose a comparison of the bounds in
order to verify the sharpness of the proposed results.

2. The learning framework

We recall the standard probabilistic model in the framework of
supervised learning, where the goal is to approximate a relation-
ship between inputs, from a set X, and outputs, from a set Y. In
this work, we target binary classification problems, as in the analy-
sis of Kulkarni, Lugosi, and Venkatesh (1998), then we assume that
Y ∈ {−1, +1}. The relationship between inputs and outputs is en-
coded by a fixed, but unknown, probability distribution µ on Z =

X × Y. The element (x, y) = z ∈ Z is defined as a labeled sample:
the training phase consists in exploiting a set (z1, . . . , zn) ∈ Zn of
labeled samples in a learning algorithm, which returns a function
h : X → {−1, +1} chosen in a fixed set H of possible hypotheses.
The learning algorithmmaps (z1, . . . , zn) to H and the accuracy in
representing the hidden relationshipµ is measuredwith reference
to a binary loss function ℓ : {−1, +1} × Y → {0, 1}, which counts
the number ofmisclassifications (e.g. ℓ(h(x), y) =

1−yh(x)
2 ). For any

h ∈ H , we define the loss L(h) as the expectation of ℓ(h(x), y)with
respect to µ, L(h) = Eµℓ(h(x), y), where we assume that each la-
beled sample is independently generated according to µ.

3. Rademacher complexity bounds

In the following, we recall the results of Bartlett andMendelson
(2003) and Koltchinskii (2001) for the pessimistic data-dependent
bound, as they allow us to introduce notation and concepts that
will be useful for the successive analyses. The results for concen-
tration inequalities can be retrieved in Boucheron et al. (2000) (for
Self Bounding Functions) and McDiarmid (1989) (for Bounded Dif-
ference Functions).

3.1. The pessimistic data-dependent bound

As remarked in the previous section, L(h) cannot be computed
sinceµ is unknown. However, we can easily compute its empirical
counterpart:

L̂n(h) = 1/n
n

i=1

ℓ(h(xi), yi). (1)

As we do not know in advance which model h will be chosen by
the learning algorithm, a classical approach consists in studying the
uniform deviation of L̂n(h) from L(h), respect to all possiblemodels
(Anthony, 2008; Bartlett et al., 2002; Bartlett & Mendelson, 2003;
Koltchinskii, 2001; Vapnik, 1999).

Definition 1. The uniform deviation is defined as

Ŝn(H) = sup
h∈H


L(h) − L̂n(h)


, (2)

and, therefore, the following inequality holds:

L(h) − L̂n(h) ≤ Ŝn(H), (3)

which allows to upper bound L(h) in terms of its empirical
counterparts.

For studying this quantity, Bartlett and Mendelson (2003) sug-
gested to use the Rademacher Complexity, a well-known statistical
tool for measuring the complexity of a class of functions.

Definition 2. The Rademacher Complexity can be defined as

R̂n(H) = Eσ sup
h∈H

2
n

n
i=1

σiℓ(h(xi), yi), (4)

where σ1, . . . , σn are independent uniform {±1}-valued random
variables.

In our case, as we are targeting binary classification problems,
the following lemma can be trivially proven.

Lemma 3.1. In the case of binary classification, the Rademacher
Complexity can be written as

R̂n(H) = Eσ sup
h∈H

2
n

n
i=1

σiℓ(h(xi), yi)

= Eσ sup
h∈H

1
n

n
i=1

σih(xi). (5)

The uniform deviation is a random variable, so it is possible to
study its expected value EµŜn(H) and relate it to the Rademacher
Complexity of the class (Bartlett et al., 2002; Bartlett &Mendelson,
2003; Giné & Zinn, 1984).

Theorem 3.2. The Rademacher Complexity and the uniform devia-
tion satisfy the following property:

EµŜn(H) ≤ EµR̂n(H). (6)

Thanks to the concentration results described in McDiarmid
(1989), it is easy to prove that, with high probability, both the
Rademacher Complexity and the uniform deviation are sharply
concentrated around their means, as shown by Bartlett and
Mendelson (2003). Thus the following, now classic, result can be
derived (Bartlett & Mendelson, 2003):

Theorem 3.3. With probability (1 − δ):

L(h) − L̂n(h) ≤ EµR̂n(H) +


log

 1
δ


2n

, ∀h ∈ H . (7)

Note that this bound cannot be computed in practice, because it
requires that µ is known. However, it is possible to derive its fully
empirical version (Bartlett &Mendelson, 2003; Koltchinskii, 2001),
which clearly shows the O(n−1/2) rate of convergence.

Theorem 3.4. With probability (1 − δ) we have that:

L(h) − L̂n(h) ≤ R̂n(H) + 3


log

 2
δ


2n

, ∀h ∈ H . (8)
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