
Neural Networks 44 (2013) 6–21

Contents lists available at SciVerse ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

Adaptive training of cortical feature maps for a robot sensorimotor controller
Samantha V. Adams a,∗, Thomas Wennekers a, Sue Denham b, Phil F. Culverhouse a

a Centre for Robotics and Neural Systems, School of Computing and Mathematics, University of Plymouth, PL4 8AA Plymouth, United Kingdom
b School of Psychology, University of Plymouth, PL4 8AA Plymouth, United Kingdom

a r t i c l e i n f o

Article history:
Received 1 April 2012
Received in revised form 2 March 2013
Accepted 3 March 2013

Keywords:
Spiking neuron SOM
Activity dependent learning
Robot controller

a b s t r a c t

This work investigates self-organising cortical feature maps (SOFMs) based upon the Kohonen Self-
Organising Map (SOM) but implemented with spiking neural networks. In future work, the feature maps
are intended as the basis for a sensorimotor controller for an autonomous humanoid robot. Traditional
SOM methods require some modifications to be useful for autonomous robotic applications. Ideally the
map training process should be self-regulating and not require predefined training files or the usual SOM
parameter reduction schedules. It would also be desirable if the organised map had some flexibility to
accommodate new information whilst preserving previous learnt patterns. Here methods are described
which have been used to develop a cortical motor map training system which goes some way towards
addressing these issues. The work is presented under the general term ‘Adaptive Plasticity’ and the main
contribution is the development of a ‘plasticity resource’ (PR) which is modelled as a global parameter
which expresses the rate of map development and is related directly to learning on the afferent (input)
connections. The PR is used to control map training in place of a traditional learning rate parameter. In
conjunction with the PR, random generation of inputs from a set of exemplar patterns is used rather
than predefined datasets and enables maps to be trained without deciding in advance how much data is
required. An added benefit of the PR is that, unlike a traditional learning rate, it can increase as well as
decrease in response to the demands of the input and so allows themap to accommodate new information
when the inputs are changed during training.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The current work is part of a larger research project which aims
to transfer novel principles from the field of Computational Neu-
roscience to a practical robotics application. A small, autonomous
humanoid robot will learn basic visuomotor coordination skills us-
ing an approach based upon the self-organising topological map as
a representation of the mammalian cortex. This sort of approach
to modelling the cortex is not new and much work has been done
previously on the development of preferences in the visual cor-
tex (Goodhill, 1993; Miikkulainen, Bednar, Choe, & Sirosh, 1998,
2005; Willshaw & von der Malsburg, 1976). The method has also
been applied to practical sensory-motor tasks such as visuomo-
tor control (Alamdari, 2005; Kikuchi, Ogino, & Asada, 2004; Metta,
Sandini, & Konczak, 1999; Morse & Ziemke, 2009; Ogino, Kikuchi,
Ooga, Aono, & Asada, 2005; Paine & Tani, 2004; Ritter, Martinez,
& Schulten, 1989; Rodemann, Joublin, & Korner, 2004; Toussaint,
2006). A variety of approaches have been used for visuomotor con-
trol in these previous works such as learning robot arm kinematics
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and dynamics directly (Ritter et al., 1989), learning the coordina-
tion between visual input and ‘motor primitives’ (Kikuchi et al.,
2004; Metta et al., 1999; Ogino et al., 2005), incorporating tra-
ditional search and reinforcement learning techniques (Alamdari,
2005; Toussaint, 2006) and even using evolutionary techniques to
learn mappings (Paine & Tani, 2004). Whilst all these approaches
have been successful, the majority of them would not be suitable
for implementation in an autonomous robot operating in real time,
because of the amount of computation required for some of the
techniques and, more importantly, they have all required the use
of a host PC to do the computations evenwhen real robot hardware
is used.

Achieving a human-like level of skill in a robot is a challenging
task as the sensory pre-processing and higher level cognitive
processing that is required needs significant computing power
which is in conflict with the limited energy resources available
on an autonomous robot. However, natural systems somehow
manage to achieve speed, fault tolerance and flexibility despite
having very lowpower requirements. Since the current capabilities
of robots do not match even the simplest animal, it seems logical
to explore in more depth bio-inspired approaches to robotics:
in particular, where artificial neural systems are implemented
using techniques inspired by a greater understanding of how
real neurons, and brains work. Computational Neuroscience
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has made considerable progress in recent years on spiking
neuron based models of sensory and cognitive processes in the
mammalian neo-cortex. Spiking Neural Networks (SNNs) are the
‘third generation’ of Neural Networks (Maass, 1997); the first
generation being networks consisting of simple McCulloch–Pitts
neurons (McCulloch & Pitts, 1943) with binary outputs and the
second generation consisting of neuronswith continuously-valued
activation functions. Spiking neurons mimic how real neurons
compute: with discrete pulses rather than a continuously varying
output. The spiking neuron is, of course, still an abstraction
from an actual neuron, but a much more biologically plausible
one especially as models can incorporate spike-timing based
learning which is believed to be an important mechanism in
natural systems. Advances in software and hardware over the
last ten years or so have made SNNs an increasingly feasible
option for robotics applications. On the software side several
general purpose spiking neuron simulators are freely available
which means that researchers do not have to code a modelling
framework from scratch, and they also benefit from a community
of users using the same tool. Desktop computing hardware is
now available that can perform parallel processing (e.g. GPU)
at an affordable price. But this can only take us so far. The
emerging field of Neuromorphic Engineering is making it possible
to simulate large spiking neural networks in hardware in real time
with modest power requirements. ‘Neural chips’ are massively
parallel arrays of processors that can simulate thousands of spiking
neurons simultaneously in a fast, energy efficient way (Jin et al.,
2010; Serrano-Gotarredona et al., 2009; Silver, Boahen, Grillner,
Kopell, & Olsen, 2007). To realistically be able to implement the
complexity of neural networks required for human-like behaviour
on-board robots in the future will require implementation in such
neuromorphic hardware. Our approach of using Spiking Neural
Networks has been directly motivated by the possibility of using
this emerging technology to implement sensory-motor controllers
directly on-board robots operating in real time and with lower
power consumption than traditional computing technologies.

The underpinning concept of the current work is the cortical
self-organising feature map (SOFM) which is an analogue of how
biological brains manage to represent complex multidimensional
information from their environment as a 2D map in the cortex.
The SOFMmethodology is inspired by the Kohonen Self-organising
Map (SOM) (Kohonen, 1995). The original Kohonen SOM is
an unsupervised learning technique most commonly used for
machine learning, for example, data clustering applications. It
is usually a two layer network: the ‘output’ layer which forms
the map and the ‘input’ layer which passes in the data to be
represented. The two layers are usually fully interconnected. The
input layer has as many neurons/nodes as there are dimensions
of data. During the training process, the Kohonen SOM self-
organises to represent the range of input data available and in
the final map the data is topologically arranged (similar inputs
are mapped to similar locations in the map). The weights on
the connections between the two layers ‘store’ the patterns and
thus the number of connections to a neuron/node determines the
maximum dimensionality of the map. The process of map training
can be summarised as follows:

1. Present an input vector of training data.
2. Select the winning node in the output layer with the highest

activation.
3. Determine a spatial neighbourhood around the winning node.
4. Adjust weights in the neighbourhood by using the learning

equation 1wij = k

xi − wij


yj.

5. Decrease the neighbourhood size N, and the learning rate k.
6. Repeat steps 1–5 for the desired number of training cycles.

The methodology used in the current work is based upon
the traditional SOM as described above but with several key
differences. Essentially spiking neurons are used instead of
traditional artificial neurons with continuous activation. The
learning rule incorporates both spatial and temporal factors to
learn the mapping of input patterns. In addition a self-regulating
process is used to adapt the learning rate in an online fashion so
that during training, patterns can be selected and presented on the
fly rather than using predefined datasets.

The structure of the paper is as follows. Section 2 describes
the details of the methodology used to create a prototype cortical
motor map, including details of the spiking neural network
setup, learning rules and training process. Section 3 describes the
development of a simple adaptive plasticity method for regulating
map training and how this has been used to replace the learning
rate parameter traditionally used in SOMs. Section 4 describes the
results from several experiments which demonstrate the benefits
of this learning method and Section 5 includes a discussion and
comments on areas for future work.

2. Methods

2.1. Overview

As outlined in the introduction, the current work has adapted
the traditional SOM methodology in several key ways. Firstly,
spiking neurons are used which means that instead of using the
highest activation to determine the winner, it is the temporal
response of the neurons that becomes important. Using spiking
neurons introduces the concept of spike timing as a means to
carry additional information. Traditional SOMs use only a spatial
neighbourhood around the winner, but in the current work
spatial and temporal neighbourhoods are used to develop the
map organisation. We have also made some amendments to the
traditional SOM to make it better suited for use in autonomous
robotic applications where the goal is to enable the robot to learn
from the information available in its environment in a completely
unsupervised way.

SOM network development is generally thought of in terms
of two distinct phases: initial topological ordering followed by
weight convergence and in computational models the phases are
usually managed explicitly by the manipulation of neighbourhood
size and learning rate parameters. Both of these parameters are
normally systematically reduced in a non-linear fashion during the
course of training according to predefined schedules. In the case
of an adaptive sensorimotor controller for a robot it is not ideal
to have to predefine such schedules to control map development.
Instead the development should be self-regulating as it is in natural
systems. The issue of defining learning rate and neighbourhood
parameter reduction in relation to traditional SOMshas been noted
by several previous researchers. For example, Berglund and Sitte
(2006) and more recently in Berglund (2010) the Parameter-Less
SOM or PLSOM is described. These works developed a method
of controlling the learning in a SOM by using the ratio of the
last error between the input vector and weight vector of the
winning node to the largest previous error as a scaling factor
(Berglund& Sitte, 2006). In later improvements, the ratio of the last
error to the diameter of the input space is used (Berglund, 2010).
Shah-Hosseini and Safabakhsh (2000, 2001) developed the TASOM
or Time-Adaptive SOM. Here, each neuron has its own learning
rate and neighbourhood parameters and these are changed
according to the distance measure between the current input
vector and the synapticweight vector of the neuron.More recently,
Shah-Hosseini (2011) has developed a variant called the Binary
Tree TASOM, which incorporates the removal and addition of
neurons during training to allow adaptation in an environment
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