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a b s t r a c t

We investigate neural architectures for identity preserving transformations (IPTs) on visual stimuli in the
spike domain. The stimuli are encoded with a population of spiking neurons; the resulting spikes are
processed and finally decoded. A number of IPTs are demonstrated including faithful stimulus recovery,
as well as simple transformations on the original visual stimulus such as translations, rotations and
zoomings. We show that if the set of receptive fields satisfies certain symmetry properties, then IPTs
can easily be realized and additionally, the same basic stimulus decoding algorithm can be employed to
recover the transformed input stimulus. Using group theoretic methods we advance two different neural
encoding architectures and discuss the realization of exact and approximate IPTs. These are realized in
the spike domain processing block by a ‘‘switching matrix’’ that regulates the input/output connectivity
between the stimulus encoding and decoding blocks. For example, for a particular connectivity setting
of the switching matrix, the original stimulus is faithfully recovered. For other settings, translations,
rotations and dilations (or combinations of these operations) of the original video streamare obtained.We
evaluate our theoretical derivations through extensive simulations on natural video scenes, and discuss
implications of our results on the problem of invariant object recognition in the spike domain.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The brain must be capable of forming object representations
that are invariant with respect to the large number of fluctuations
occurring on the retina (DiCarlo & Cox, 2007). These include object
position, scale, pose and illumination, and the presence of clutter.
In a simple model of the visual system in primates, the incoming
visual stimulus is first represented in the responses of the retinal
ganglion cells (RGCs). Subsequently, the stimulus is re-represented
at each neural layer starting with the first relay center (LGN) and
followed by the visual cortex (V1, V2, V4 and IT cortex). Each of
these representations can be modeled as an Identity Preserving
Transformation (IPT). At the final stage, the visual objects are
represented in a way that is amenable to an efficient comparison
with an internal (memory) representation of the object. Since spike
trains are the language of the brain, the latter representation is in
the formof a neural population activity. Consequently, the decision
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whether the object is present or absent takes place in the spike
domain (Logothetis & Sheinberg, 1996).

What are some plausible computational or neural mechanisms
by which invariance could be achieved? An early pioneering work
(Olshausen, Anderson, & Essen, 1993) provides a model mecha-
nism for shifting and rescaling the representation of an object from
its retinal reference frame into an object-centered reference frame
(see also Anderson & Essen, 1987). In one class of models used in
the invariant recognition literature, transformations of the incom-
ing visual signal arematchedwith an existing stored version of the
image (Bülthoff & Edelman, 1992). More formally, let I be a visual
sensory object (stimulus). An IPT acting on I is modeled as an in-
vertible transformation T that, in turn, consists of a composition of
a set of elementary operators (e.g., rotation, dilation, translation,
etc.). The set of all spike trains produced by T (I) for all possible
IPTs T defines the object-manifold. For identifying the instantia-
tion of a stored object in the incoming object-manifold, the algo-
rithm presented in Arathorn (2002) calls for the identification of
the operator T (and its inverse). More recent research focuses on
routing/connectivity operators in support of information delivery
(e.g., sensory information) to higher brain centers (Wolfrum & von
der Malsburg, 2007).

In this paper we focus on the realization of IPTs in the spike
domain. The spike domain is a non-linear, stimulus-dependent
representation space. The non-linear nature of the stimulus
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Fig. 1. General signal processing chain with a Time Domain core.

representation has proven to be amajor challenge for spike domain
computation. Our goal here is to put forth the first efficient rigorous
computational model that allows formal reasoning in the spike
domain while at the same time it is biologically relevant. Our
model of computation can briefly be summarized in block diagram
form in Fig. 1. The input visual stimulus is encoded in the time
domain by an instantiation of a Video Time Encoding Machine
(Video TEM) (Lazar & Pnevmatikakis, 2011b). Video TEMs are
spatio-temporal models of neural encoding that are realized with
receptive fields in cascade with a population of spiking neurons
(Lazar, Pnevmatikakis, & Zhou, 2010). The encoded stimulus (in the
form of spikes) is first processed in the Time Domain Processing
(TDP) block and then decoded by a Time DecodingMachine (TDM).
The output of the TDM is again an analog signal. Our time (spike)
domain computation chain resembles the traditional digital signal
processing (Oppenheim, Schafer, & Buck, 1999) chain where an
analog signal is converted into a digital signal using an analog-to-
digital converter, thenprocessedwith a digital signal processor and
finally converted back to an analog signal with a digital-to-analog
converter.

An example of processing in the time domain appeared in Lazar
(2006) where it was demonstrated how an arbitrary linear filter
can be implemented in the time domain, using neural components.
By building upon these results, any IPT acting on the input stimulus
can be realized in the time domain. However, the setup of Lazar
(2006) is rather complex as it requires a different TDM for any
desired transformation of the sensory stimulus.

There are two types of operators that are used for encoding
of stimuli with TEMs: linear operators (receptive fields) followed
by non-linear operators (spiking neural circuits). These operators
are cascaded. The efficient realizability of IPTs presented here
is primarily due to the structure of the receptive fields of the
Video TEM. These are required to form an overcomplete spatial
(or spatio-temporal) filterbank. Furthermore the set of receptive
fields has to exhibit certain symmetry properties (in group
theoretic sense). If the receptive fields (linear filters) have a group
structure transformations on the stimulus can be realized via
transformations on the filters. However, these group operations
cannot be, in general, ‘‘propagated’’ through the neural encoding
circuits (formally non-linear operators). Surprisingly, however,
under certain conditions described in the paper, rotations, scaling
and translations can be efficiently executed in the spike domain.

We show that a large class of IPTs can be efficiently realized
by making connectivity changes in the TDP block while the TDM
block remains the same. The TDP block consists of a ‘‘switching
matrix’’ that simply regulates the connectivity between the TEM
and TDM blocks. We will show that different IPTs can be realized
with different connectivity settings of the switching matrix.
For example, for a particular setting of the switching matrix,
the original stimulus is faithfully recovered. For other settings,
translations, rotations and dilations (or combinations of these
transformations) of the original video stream are obtained.Wewill
also show that IPTs can be computed in parallel.

Our model can be viewed as a generalization of the shifting
and rescaling mechanisms proposed in Olshausen et al. (1993).
We extend these operations to include rotations and show how to
efficiently implement them in the spike domain. We also discuss
the constraints that the finite size of the neural population imposes
on the set of achievable transformations. By starting from the

continuous group on the plane characterizing all the possible IPTs,
we advance two different encoding architectures whose receptive
fields are defined on two different discrete grids. The first is a
log-polar grid, similar to the ones used in models of foveated
vision (Nattel & Yeshurun, 2000; Weber & Triesch, 2009; Wohrer
& Kornprobst, 2009). On the log-polar grid the switching matrix
can realize combinations of rotations and dilations in a lossless
manner in the spike domain. The second is a Cartesian grid (Field
& Chichilnisky, 2007; Lee, 1996). On the latter grid the switching
matrix can realize combinations of dilations and translations in a
lossless manner in the spike domain as well. Finally, we discuss
how discrete approximations of the continuous symmetry group
can be used to perform arbitrary but approximate IPTs in the
spike domain. Examples are given that intuitively demonstrate our
methodology.

2. Methods

2.1. The architecture of the model of computation

An illustration of a general switching (‘‘rewiring’’) architecture
for encoding, processing and decoding video streams is shown in
Fig. 2. Our architecture follows the general one depicted in Fig. 1.

The input signal is an analog video stream and is encoded by a
canonical Video Time Encoding Machine (see Fig. 2). A more for-
mal overview of Video TEMs is available in Appendix A.1. Briefly,
the Video TEM consists of a bank of linear filters/receptive fields
Dj(x, y, t), j = 1, . . . ,N , in cascade with non-linear spiking cir-
cuits (e.g., neural circuits realized with Integrate-and-Fire neu-
rons). Hence, a Video TEM maps an input visual stimulus into a
vector of spike trains. The spiking activity of the neural circuits can
be interpreted as signal dependent sampling. This sampling oper-
ation, defined as the t-transform, is expressed by the following set
of equations

⟨I, φj
k⟩ = qjk, k ∈ Z, j = 1, . . . ,N


, (1)

where I = I(x, y, t) is the input visual stimulus that belongs to
a Hilbert space, φj

k is the sampling function associated with k-th
spike of neuron j and qjk is itsmeasurement (the projection of I onto
the sampling function). The sampling functions are determined by
the linear receptive fields, the spike times and the parameters of
the neural circuits, whereas the outcomes of these projections de-
pend on the spike times and the parameters of the neural circuits.
Although the left-hand-side of Eq. (1) is an inner product, the sam-
pling by the neural circuits is highly non-linear, and the sampling
functions are, through the spike times, stimulus dependent.

The TDM block implements decoding algorithms for the
canonical Video TEM (see Fig. 2). A more formal overview of Video
TDMs is available in Appendix A.2. Under certain conditions the
Video TEMs can faithfully encode the input video stream as a
multidimensional sequence of spike trains. The TDM architecture
implements a perfect decoding algorithmof the input video stream
(see Appendix A.2). Briefly, the faithful representation condition
ensures that (i) the set of linear receptive fields does not filter
out any spatial information contained in the input stimulus (Lazar
& Pnevmatikakis, 2011a) and (ii) the spiking frequency of the
neurons is high enough so that it can represent the temporal
information of the stimulus (Lazar & Pnevmatikakis, 2011b).
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