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a b s t r a c t

With the advances of biomedical techniques in the last decade, the costs of human genomic sequencing
and genomic activity monitoring are coming down rapidly. To support the huge genome-based business
in the near future, researchers are eager to find killer applications based on human genome information.
Causal gene identification is one of themost promising applications,whichmayhelp the potential patients
to estimate the risk of certain genetic diseases and locate the target gene for further genetic therapy.
Unfortunately, existing pattern recognition techniques, such as Bayesian networks, cannot be directly
applied to find the accurate causal relationship between genes and diseases. This is mainly due to the
insufficient number of samples and the extremely high dimensionality of the gene space. In this paper, we
present the first practical solution to causal gene identification, utilizing a new combinatorial formulation
over V-Structures commonly used in conventional Bayesian networks, by exploring the combinations of
significant V-Structures. We prove the NP-hardness of the combinatorial search problem under a general
settings on the significance measure on the V-Structures, and present a greedy algorithm to find sub-
optimal results. Extensive experiments show that our proposal is both scalable and effective, particularly
with interesting findings on the causal genes over real human genome data.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

With the advances of biomedical techniques in the last decade,
such as microarray (Bassett, Eisen, & Boguski, 1999), the cost of
gene activity monitoring is coming down to several hundreds.1 In
the near future, it is likely that microarrays will be used to test the
gene activities for every person for disease diagnosis or gene ther-
apy, forming a businessmarket worth billions of dollars. Before the
arrival of the new genomic age, biomedical researchers are now
eager to look for killer applications in the huge genomic business.
Causal gene identification is one of the most promising applica-
tions (Noble, 2008), which aims to help potential patients to accu-
rately estimate their risk with respect to certain diseases.

Unfortunately, identification of the causal genes related to ge-
netic diseases is by no means an easy task in the biomedical do-
main (Cookson, Liang, Abecasis, Moffatt, & Lathrop, 2009). While
traditional biological and pathological methods fail to effectively
and efficiently discover the causal genes, computer scientists and
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statisticians are trying to apply machine learning and data min-
ing techniques to tackle the problem, e.g. Cai, Hao, Yang, and Wen
(2009); Cai, Tung, Zhang, andHao (2011), Kim,Wuchty, and Przyty-
cka (2011) and Schadt et al. (2005). Given the gene expression data
from humans with/without certain genetic diseases, algorithms
are designed to automatically find out significant genes causing
these diseases.

In statistics and learning communities, Bayesian networks (BN)
are a common tool used to analyze the correlation and causality re-
lationships between variables. By running statistical significance
tests on variable combinations, it is possible to construct a prob-
abilistic graphical model to simulate and evaluate the impact of
certain variables over others (Cai, Zhang, & Hao, 2011). However,
existing BN methods suffer from three major drawbacks on the
causal gene identification problem. Firstly, complete BN construc-
tion needs an exponential number of samples to support accurate
estimation in statistical tests. Secondly, most of the BN learning
methods focus only on building a probabilistic model with high
likelihood, instead of finding the exact causality relationship. This
potentially leads to a large number of false positive causality con-
nections between genes and diseases, even when the probabilistic
model achieves a high likelihood. Therefore, although BN structure
learning methods are capable of finding partial causal genes, these
methods tend to output more noisy results with diminishing accu-
racy and low robustness, due to the low signal–noise ratio, the high
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Fig. 1. Pathway related to Acute Myeloid Leukemia.

dimensionality in gene expression data and the limited number of
samples.

In Fig. 1, we present an example of a known pathway related to
Acute Myeloid Leukemia (AML). All the genes’ expression levels are
highly correlated to the variable AML, i.e. the disease status of the
patient. However, the gene expression level of STAT, Grb2, Sos, Rsa
and P13K does not affect the state of the disease, while FLT3 and
c-KIT are the only direct causal genes of AML. It means that these
two genes should be the target genes in any gene therapy on AML.
In the traditional gene selection or Bayesian Networkmethods, it is
difficult to distinguish FLT3 and c-KIT from the other related genes.
This is due to the existence of probabilistic equivalent models dif-
ferent from the true pathway in the figure, which also fully fit the
observations, but probably with completely different structures.

In this paper, we present a new solution to tackle the causal
gene identification problem, based on a combinatorial formulation
over V-Structures in Bayesian network. V-Structure is a special type
of local probabilistic model involving only three variables X, Y ,
Z in form of X → Y ← Z . Different from other local structures,
V-Structures are supposed to bemore robust and discriminating in
causality identification problems, since it is not statistically equiv-
alent to any other structures involving the same variables. On the
other hand, the computation and verification of V-Structures is rel-
atively cheap, compared to the complete construction of Bayesian
network. V-structure thus plays an important role in conventional
Inductive Causality methods commonly used in causal discovery
methods (Pearl, 2009).

However, in the gene expression data, a large number of false V-
Structuresmay be discovered, since it is hard to obtain a significant
statistic test on small sample high dimensional data. Fortunately,
we observe that the falsely discovered V-Structure can be detected
for it is usually in conflict with true ones. Thus, we transform the
causal gene selection problem into another optimization problem,
targeting to identify a group of most significant V-Structures with
maximal coverage andwithout conflict. Although the optimization
formulation is proven NP-hard, we present a greedy algorithm ef-
fective on finding sub-optimal causality resultswith high accuracy.
Our tests on synthetic datasets verify the effectiveness of our algo-
rithm. Experiments on real gene expression data reveal interesting
results on causal genes related to Prostate Cancer and Leukemia.

The outline of the paper is listed as follows. First, we will re-
view some existing studies on disease-related gene discovery and
causality inference in Section 2. Second, we will discuss the prob-
lem definition and preliminary knowledge in Section 3. Third, we
will show our theoretical analysis and details of the algorithm in
Section 4. We will then present experimental results in Section 5
and finally conclude this paper in Section 6.

2. Related work

Feature selection is the most commonly used tool for the
disease-related gene discovery method (Saeys, Inza, & Larrañaga,
2007). Generally speaking, feature selection methods can be clas-
sified into three categories: filters, wrappers and embeddedmeth-
ods. Filters employ only intrinsic properties of the feature without

considering its interaction with the classifier. In wrapper methods,
a classifier is usually built and employed as the evaluation crite-
rion. If the feature selection criterion is derived from the intrinsic
properties of a classifier, the corresponding method belongs to the
embedded methods category. False discovery (Reiner, Yekutieli,
& Benjamini, 2003) and feature set redundancy (Yu & Liu, 2004)
are two problems we need to consider for all feature selection
problems.

A causality Bayesian network is part of the theoretical back-
ground of this work. A causality Bayesian network is a special case
of a Bayesian network, whose edge direction presents the causal-
ity relations among the nodes (Pearl, 2009). The Causality Bayesian
network is different from the Bayesian network used in the regu-
latory network reconstruction problem, such as Friedman, Linial,
Nachman, and Pe’er (2000) and Kim, Imoto, and Miyano (2004).

Structure learning of a Bayesian network is closely related to the
algorithmic background of this work, e.g. the well-known PC algo-
rithm (Kalisch & Bühlmann, 2007; Spirtes, Glymour, & Scheines,
2001) and Markov Blanket discovery methods (Zhu, Ong, & Dash,
2007). These methods provide the skeleton of causal structures,
i.e. parent–child pairs and Markov Blanket. However, these meth-
ods usually cannot distinguish causes from consequences, which
mostly relies on other techniques to conduct exact causal discov-
ery.

Pearl is the founder of the causality analysis theory (Pearl,
2009). Most causality inference works simply assume the acquisi-
tion of a sufficiently large sample set (Aliferis, Statnikov, Tsamardi-
nos, Mani, & Koutsoukos, 2010a, 2010b), or expensive intervention
experiments (He&Geng, 2008). Though there are someworks aim-
ing to solve the inference problemwhen a small number of samples
are available (Bromberg &Margaritis, 2009), the exact sample sizes
used in their empirical studies remain significantly larger than the
scale of gene expression data. To the best of our knowledge, there
does not exist a provable method to run robust causal inference
on the real gene expression data. In this paper, we present the first
practical algorithm to tackle the problems of small sample size and
high dimensionality in gene data.

Another concept that is closely related to our work is Granger’s
causality (Lozano, Abe, Liu, & Rosset, 2009; Mukhopadhyay
& Chatterjee, 2007), which uses Granger’s causality theory to
infer the gene regulatory networks from the time series gene
expression data. Granger’s work differs from traditional causality
inference techniques in two aspects. Firstly, compared with the
conventional definition of causality, Granger’s causality is more
likely a regression method and does not reflect the true causality
mechanism. Secondly, the temporal information is essential for
Granger’s causality inference, which is hard to collect in the
disease–gene relationship analysis context.

3. Preliminaries

Assume that all samples from the problem domain contain
information on m different genes, i.e. G = {g1, g2 . . . , gm}, and the
disease state of the sample y. Let D = {x1, x2, . . . , xn} denote the
complete sample set. Each sample xi is denoted by a vector xi =
(xi1, xi2, . . . , xim, yi), where xij indicates the expression level of the
sample xi on gene gj. And yi is the disease state associated with the
sample xi.

In particular, if P is the distribution defined on all the genes’
expression level and the state of the disease, i.e. V = G


{y}, we

assume that there exists a Bayesian network BN faithful to the dis-
tribution P . A Bayesian network includes a directed acyclic graph
which indicates conditional (in)dependent relationships among
the variables, and conditional probability functionswhich simulate
conditional probability distribution of each variable given the par-
ent nodes. Following the common assumption of existing studies,
we only consider a problem domainwith the Faithfulness Condition
(Koller & Friedman, 2009) as listed below.
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