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a b s t r a c t

Modular architecture has been found in most cortical areas of mammalian brains, but little is known
about its evolutionary origin. It has been proposed by several researchers that maximizing information
transmission among subsystems can be used as a principle for understanding the development of
complex brain networks. In this paper, we study how heterogeneous modules develop in coupled-map
networks via a genetic algorithm, where selection is based on maximizing bidirectional information
transmission. Two functionally differentiated modules evolved from two homogeneous systems with
random couplings, which are associated with symmetry breaking of intrasystem and intersystem
couplings. By exploring the parameter space of the network around the optimal parameter values, it was
found that the optimum network exists near transition points, at which the incoherent state loses its
stability and an extremely slow oscillatory motion emerges.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Modular architecture is one of the most frequently referenced
concepts of neural organization (Felleman & Van Essen, 1991;
Mountcastle, 1997; Szentágothai, 1983). In biological systems,
such modular architecture has been self-organized in ontogeny,
influenced by phylogeny (Wagner, Pavlicev, & Cheverud, 2007). In
contrast, the modules and their interactions of artificial machines
are designed by humans. Understanding themechanismgiving rise
to functionally differentiated modules in biological systems, such
as cortical module architectures, is of great interest.

In theoretical studies, it has been proposed that maximizing
information transmission between subsystems can be used as
a guiding principle for understanding the development and
evolution of complex brain networks. Linsker (1988, 1989, 1997)
shows that information transmission between successive layers
of feed-forward networks is a viable principle for designing
functional neural networks. Recently, Tanaka, Kaneko, and Aoyagi
(2009) showed that the learning algorithm that maximizes
information retention in recurrent networks also gives rise to
the appearance of biological structures, such as cell assemblies,
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and even to dynamics, such as spontaneous activity of synfire
chain and critical neuronal avalanches. One of the present authors
has proposed the idea of a new self-organization principle based
on a variational principle (Kaneko & Tsuda, 2001; Tsuda, 1984,
2001): components (or elements) are self-organized according
to constraints that act on the whole system, whereas according
to the usual self-organization principles (ex. Haken, 1980;
Nicolis & Prigogine, 1977), macroscopic order is self-organized
via interactions among microscopic elements. Actually, neuron-
like elements as components of a system have been obtained
under the condition of maximum transmission of information
across a whole system (Ito & Tsuda, 2007; Watanabe, Ito, &
Tsuda, in preparation). In the brain, bidirectional information
transmission amongmodules is crucial for information processing.
In fact, most connections between cortical modules are known
to be bidirectional (Felleman & Van Essen, 1991). Yamaguti,
Tsuda, and Takahashi (2014) have found intermittent switching
of direction of information flow in two heterogeneously coupled
chaotic systems. Such a mechanism may be applicable to
bidirectional information transmission in neural systems.

Motivated by these studies, here we propose a mathematical
model for functional differentiation induced by selection based
on maximizing bidirectional information transmission. We try
to extract the essence of evolutionary dynamics by investigat-
ing a coupled-oscillator network model. We construct randomly
coupled-oscillator networks, each consisting of two sub-networks,
by using a discretized version of the Kuramoto phase oscillator
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Fig. 1. Schematic representation of the model network and the parameters that
regulate coupling probabilities.

model (Kuramoto, 1984). Each sub-network consists of N oscilla-
tors, whose states are represented by phase variables. A genetic
algorithm is used to modify the parameters to the direction of bet-
ter fitness. Transfer entropy (Schreiber, 2000), which measures di-
rected information transfer, is estimated to quantify information
flow between the two sub-networks in both directions and their
product is regarded as fitness in the evolutionary process.

In Section 2, the proposed networkmodel, analyticmethod, and
procedure for evolution by the genetic algorithm are described.
In Section 3, we give numerical results of this evolutionary
process. In Section 4, we study the fitness landscape around the
optimum network, exploring the parameter space as a means
of characterizing the evolutionary process from the viewpoint of
dynamical systems. In Section 5, dependences of the coupling
density on heterogeneity are investigated. Section 6 is devoted to
summary and discussions.

2. Models and methods

2.1. Network model

We consider a network of oscillators, which consists of two
sub-network systems. Each sub-network consists of N = 200
phase oscillators, whose dynamics is described by a discrete-time
version of the Kuramotomodel (Barlev, Girvan, & Ott, 2010; Daido,
1986; Kuramoto, 1984). It is known that the dynamics of weakly
coupled oscillators that have stable limit-cycles can be reduced
to a coupled equation of phase oscillators by using a reduction
technique (Kuramoto, 1984). The Kuramoto model corresponds to
the simplest case in which the coupling term can be represented
by the lowest order term of its Fourier series. Therefore, it is
reasonable to expect that the results presented here will be robust,
even for other coupled-oscillator systems.

The numbers of couplings between oscillators in the networks
are provided by three parameters, p, q, and r . Roughly, p is the
mean probability for a coupling between two oscillators in a whole
network, q is the proportion of internetwork couplings to whole
couplings, and r is the proportion of internetwork couplings from
system 1 to 2 to whole internetwork couplings (see Fig. 1). The
coupling probability from an oscillator to another oscillator in the
same sub-network (intranetwork coupling) is given by 2p(1 − q),
and the coupling probability from an oscillator in sub-network 1
(resp. 2) to an oscillator in sub-network 2 (resp. 1) (internetwork
coupling) is given by 4pqr (4pq(1 − r)). The existence of coupling
between any two oscillators is independent of other couplings.

The dynamics of the k-th oscillator in sub-network i (i = 1,
2, k = 1, . . . ,N) is described by
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where ω is a natural frequency, α is a coupling strength, β(i,k)t
denotes the Gaussian noise term independently imposed on each
oscillator, and G(i,k) denotes a set of labels (j, l) for oscillators
connecting to oscillator (i, k). In numerical simulations, ω and α
are fixed to 1 and 0.1, respectively, and the standard deviation of
β
(i,k)
t is set to 0.05.
For eachψ ij

kl, one of two possible values, (m−1)π withm = 1 or
2, is randomly assigned according to given probabilities p(ij)m , which
satisfy the probability conditions p(ij)m ≥ 0 and p(ij)1 +p(ij)2 = 1. In the
case of a two-oscillator system, these correspond to phase locking,
with 0 as ‘‘in-phase’’ and π as ‘‘anti-phase’’.

To characterize the macroscopic states of the sub-networks,
we define a complex order parameter (Kuramoto, 1984; Landau &
Ginzburg, 1950) R(i)t for each sub-network as follows:
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Its magnitude |R(i)t | can be used as a measure of phase coherence
within the sub-network, and its angle Θ(i)

t = arg R(i)t represents a
mean phase for each sub-network. The phase differences given by
Φt = Θ

(2)
t −Θ

(1)
t maybe considered to be another order parameter

which conveys information on phase modulations.

2.2. Information flow as an index of optimization

We used transfer entropy (TE), an information-theoretic mea-
sure, to quantify directed information transfer from one sub-
network to another (Kaiser & Schreiber, 2002; Paluš & Vejmelka,
2007; Schreiber, 2000; Vicente, Wibral, Lindner, & Pipa, 2011; Ya-
maguti et al., 2014). Let X = {Xt} and Y = {Yt}, (t = 0, 1, . . .)
be two discrete random processes with states xt and yt selected
from a countable alphabet A. Let x(m)t = (xt , xt−τ , . . . , xt−(m−1)τ )

and y(l)t = (yt , yt−τ , . . . , yt−(l−1)τ ) be the delay-coordinate vectors
with time-step τ . We write probabilities and conditional proba-
bilities as p(·) and p(·|·), respectively. If the future state of Y , de-
noted by yt+τ , depends on y(l)t but not on x(m)t , then the generalized
Markov property
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t ), (2)

holds. If there is any dependence on x(m)t , it can be quantified by
the transfer entropy (TE), which is defined as the Kullback–Leibler
divergence between the two probability distributions on each side
of Eq. (2):
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where the sum runs over the all possible orderings of alphabets.
In this way, TE quantifies a directional dependence between two
time series. TE can also be represented by using conditionalmutual
information (Matsumoto & Tsuda, 1988; Paluš & Vejmelka, 2007):
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.

When the two processes cannot be assumed to be Markov
processes, TE is regarded as just an approximate measure of
information transfer. Hereafter we treat the case l = m = 1.
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