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We investigated the organization of a recurrent network under ongoing synaptic plasticity using a model
of neural oscillators coupled by dynamic synapses. In this model, the coupling weights changed dynami-
cally, depending on the timing between the oscillators. We determined the phase coupling function of the
oscillator model, I"(¢), using conductance-based neuron models. Furthermore, we examined the effects
of the Fourier zero mode of I"(¢), which has a critical role in the case of spike-time-dependent plasticity-
organized recurrent networks. Heterogeneous layered clusters with different frequencies emerged from
homogeneous populations as the Fourier zero mode increased. Our findings may provide new insights

into the self-assembly mechanisms of neural networks related to synaptic plasticity.
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1. Introduction

Synaptic plasticity plays a vital role in learning in the brain,
and it has been intensively investigated to understand the mech-
anism underlying learning. It induces changes in the structures
of synaptic connections associated with neuronal activity, fa-
cilitating the organization of memory-related functional neural
assemblies (Hebb, 1949). Recent neurophysiological experiments
revealed that changes in synaptic connections depend on the rela-
tive spike timing between neurons during spike-timing-dependent
plasticity (STDP) (Bi & Poo, 1998; Caporale & Dan, 2008; Markram,
Liibke, Frotscher, & Sakmann, 1997). This observation implies that
the temporal spike patterns of neurons determine synaptic pat-
terns, raising the question of how STDP organizes neural networks
into functional neuronal assemblies. This query remains an open
question in the field of theoretical neuroscience, particularly when
a network has rich recurrent connections.

Several numerical studies reported that STDP-organized recur-
rent networks exhibit interesting behaviors, including the emer-
gence of clusters with neurons that fire synchronously (Gilson
et al.,, 2009; Harris et al., 2003; Karbowski & Ermentrout, 2002;
Maistrenko, Lysyansky, Hauptmann, Burylko, & Tass, 2007; Seliger,
Young, & Tsimring, 2002; Zanette & Mikhailov, 2004) and feed-
forward networks (Cateau, Kitano, & Fukai, 2008; Izhikevich, Gally,
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& Edelman, 2004; Masuda & Kori, 2007; Morrison, Aertsen, & Dies-
mann, 2007; Song & Abbott, 2001).

The interplay between neurons and their synapses makes it
difficult to analyze the dynamics of STDP-organized recurrent
networks. In the presence of plasticity, the spike pattern alters the
structure of the synaptic connections, resulting in the formation
of new spike patterns. In other words, the synaptic connections
and neuronal activities evolve simultaneously. This co-evolution
presents a novel, complicated situation from the perspective of
statistical physics. A conventional system is defined on the basis of
a static substrate, in which several units of the system are coupled
with some fixed interactions, usually denoted by a lattice, all-to-
all connections, or a static network. In contrast, in a co-evolving
dynamical system, the interactions change together over time with
the states of the units, leading to reorganization of the interactions
within the system.

To elucidate the essential nature of co-evolving neural network
dynamics, we developed a simple, co-evolving dynamical model
of neuronal oscillators (Aoki & Aoyagi, 2009, 2011). In this report,
we demonstrate that STDP can lead to the organization of several
distinct network types. In Section 2, we briefly review the phase
description method and describe synapse dynamics using the
phase oscillator model. In Section 3, to illustrate the typical
behaviors of the model, as presented in our previous papers
(Aoki & Aoyagi, 2009, 2011), we summarize the numerical results
obtained by approximating I"(¢) as a sine function. In Section 4,
we present the main results of this paper. First, we confirm the
validity of the sine approximation of I"(¢), by determining the
parameters of the phase oscillator model. These parameters are
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deduced from conductance-based regular- and fast-spiking neuron
models. Second, we show that the determined form of the coupling
function exhibits a novel behavior, which we explain via the
Fourier zero mode of the phase coupling function of the oscillator.
The previous studies on phase oscillator have ignored this mode.
However, we find that this constant term is critically important
for STDP-organized recurrent networks, as evidenced by the result
that heterogeneous layered clusters with different frequencies
emerge from homogeneous populations with identical natural
frequencies. Finally, we analyze the transition from homogeneous
to heterogeneous layered clusters. In Section 5, we discuss and
summarize our findings.

2. Materials and methods
2.1. Dynamics of neuronal oscillators

We consider the following equation of a coupled dynamical
system:
de

E =FX;) + ;fij(xh Xj),

where X; denotes the state of the ith neuron in a network of N
neurons. The first term describes the intrinsic dynamics of the
neurons (e.g. several types of ion channels) and the second term
describes coupling with other neurons via synapses.

The activity of a neuron is assumed to be oscillatory, rather than
random. Thus, we consider that the neuron model undergoes a
limit-cycle oscillation, which is perturbed by synaptic inputs and
noises. This assumption enables us to reduce the description of
the neuron to a simple form with the variable ¢. Using a standard
reduction technique (Kuramoto, 1984), the coupled limit-cycle
system can be described as follows:

dei 1

E=wf+ﬁjZkgr(¢f—¢j>, Q)
where ¢; denotes the phase of the limit-cycle oscillation of the ith
neuron in the network (i = 1, ..., N), wj; is its natural frequency,
and k;; is the coupling weight of the connection from the jth to the
ith neuron. In Section 3 and our previous papers (Aoki & Aoyagi,
2009, 2011), the coupling function I"(¢) was assumed to take
the simple form I'(¢) = —sin(¢ + «) for several reasons. By
definition, I"(¢; — ¢,) is written as

1 2
F(¢1—¢2)=£/ dOZ(6 + ¢1) - 80 + ¢1,6 + ¢2),
0

where Z(¢) is the phase sensitivity function (Kuramoto, 1984), and
g is the coupling term between the oscillators. Near a Hopf bifurca-
tion point involving many biological and chemical oscillators, the
limit-cycle oscillation can be described by the Stuart-Landau equa-
tion. The phase sensitivity function for the oscillator is derived as
Z(¢p) = (—sin¢ —c; cos ¢, cos ¢ — ¢, sin ¢) where ¢, is a parame-
ter of the oscillator. Thus, in the case of diffusive coupling between
Stuart-Landau oscillators, the coupling function I"(¢) can be de-
rived analytically as the above form by Kuramoto (1984). Although
I'(¢) generally has higher Fourier modes, we approximate the
form of the function while neglecting these higher modes. The con-
stant term of the coupling function Iy is neglected because it can
be absorbed into the natural frequency term w; — w;+ % > kijIo.
Under suitable conditions, the parameter « can be regarded as the
phase difference induced by a short transmission delay in the cou-
pling (Izhikevich, 1998). For example, « can represent an axonal
transmission delay in the synaptic connection or a delay in the
metabolic reaction path in nerve cells.
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Fig. 1. Phase diagram of the dynamical system defined by Egs. (3) and (4). Three
types of asymptotic states are observed: two-cluster (Tw), coherent (Co), and
chaotic (Ch).

The reduced function I'(¢) can be systematically calculated
from the original neuron model (Kuramoto, 1984). In Section 4,
we will determine the form of I"(¢) for two types of conductance-
based neuron models. We will compare the results with findings
from the approximated form of I"(¢), to check the validity of the
approximation.

2.2. Dynamics of synaptic weights

Next, we introduce the dynamics of the synaptic weights due to
the plasticity. The evolution of the weights depends on the relative
timing between the neurons, similar to the case with STDP:
dk;j

I =eA(¢p; — ¢j),

The function A(¢), which we refer to as a learning function,
determines the evolution of the weights. The learning parameter
€ has a very small value because the dynamics of the synaptic
weights are much slower than those of the neurons. The condition
|k,-j} < 1 means that the synaptic weight is bounded. If the weight
has a value outside [1, 1], then the weight is immediately set to the
appropriate bounded value (1 or 1). This rule is reasonable because
the weight cannot increase indefinitely.

The learning function A(¢) is periodic. Therefore, for the sake
of simplicity, we assume that A(¢) takes the form

A(p) = —sin(¢; — ¢ + B)

where B is the shift parameter that characterizes the learning
function (top panels in Fig. 1). For example, when 8 ~ —m /2, the
weights for a pair of in-phase (or anti-phase) neurons will increase
(or decrease). This relationship can be considered as a Hebbian-
like rule. When f ~ 0, the dependency on the relative timing
becomes similar to the temporally asymmetric Hebbian rule. When
B ~ m/2, the learning function has the opposite form to the
Hebbian-like rule.

|ky| < 1. (2)
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