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a b s t r a c t

Although it is very important to scrutinize recurrent structures of neural networks for elucidating
brain functions, conventional methods often have difficulty in characterizing global loops within a
network systematically. Here we applied the Hodge–Kodaira decomposition, a topological method, to
an evolving neural network model in order to characterize its loop structure. By controlling a learning
rule parametrically, we found that a model with an STDP-rule, which tends to form paths coincident
with causal firing orders, had the most loops. Furthermore, by counting the number of global loops
in the network, we detected the inhomogeneity inside the chaotic region, which is usually considered
intractable.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Although the network topology can be very important for
communicating neurons, the conventional network analyses are
often limited to locally defined variables such as degrees. Those
intrinsically local variables cannot capture the global recurrent
structures ubiquitously observed in neural networks. In fact, a
network that alters its coupling strengths under STDP learning
rule has tendency to make long paths of sequential firings (Aoki
& Aoyagi, 2007, 2009, 2011, 2012; Buonomano, 2005; Edelman,
Izhikevich, & Gally, 2004; Liu & Buonomano, 2009; Magnasco,
Piro, & Cecchi, 2009; Masuda, Kawamura, & Kori, 2009; Morrison,
Aertsen, & Diesmann, 2007; Takahashi, Kori, & Masuda, 2009;
Tsubo, Teramae, & Fukai, 2007).

To characterize the global loop structures, the approaches based
on algebraic topology are needed (Bossavit, 1997; Curto, Itskov,
Veliz-Cuba, & Youngs, 2013; Fulton, 1995; Hatcher, 2002). Recent
advances in the field of computational topology made it possible
to compute topological invariants, such as the number of ‘‘holes’’
in proteins (Gameiro et al., 2012), in an accessible way (Arai,
Kokubu, & Pilarczyk, 2009; Edelsbrunner &Harer, 2009; Kaczynski,
Mischaikow, & Mrozek, 2010). For example, topological methods
can count the number of ‘‘marbles’’ in an image irrespective of
their shapes, which can be much more informative in detecting
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cancers than just using raw pixels. For discrete graphs, ‘‘graph
invariants’’, independent of labeling, are desired (Chandrasekaran,
Parrilo, &Willsky, 2012) in the same vein, especiallywhen, say, you
randomize initial conditions as in this paper and, therefore, do not
care about specific labels.

Here we apply the Hodge–Kodaira decomposition of graph
flows (de Rham, 1984; Hodge, 1941; Jiang, Lim, Yao, & Ye,
2011; Kodaira, 1949; Warner, 1983) to evolving neural network
models (Aoki & Aoyagi, 2009) in order to count the number
of global loops as a topological measure of network structures.
Specifically, it is interesting to see if the measure reflects the
bifurcation diagrams and even subdivides chaotic parameter
regions, which are usually considered intractable.

In Section 2, we explain the evolving neural network model
which we simulated. We also show the method of Hodge–Kodaira
decomposition. In Section 3,we show the results of Hodge–Kodaira
decomposition applied to the evolving neural networks. Finally,
Section 4 presents a summary and discussions.

2. Materials and methods

2.1. Simulations

We simulated the following model of N(=100) phase oscilla-
tors whose couplings evolve over time (Aoki & Aoyagi, 2009):

dφi

dt
= ω −

1
N

N
j=1

kij sin(φi − φj + απ)

dkij
dt

= −ϵ sin(φi − φj + βπ), (1)
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Fig. 1. Learning rule of the model: dkij(∆φ)

dt (see Eq. (1)). The parameter β can control the learning rule.

Fig. 2. Bifurcation diagram of the model consisting of three attractor states: two-cluster (Tw), coherent (Co) and chaotic (Ch) states (top). The dynamics of 100 neurons
in each attractor state (bottom). The phase of each neuron in [0, 2π ] is represented by gradation. The parameter sets (α, β) are (0.3, −0.6) (left), (0.3, 0) (middle) and
(0.3, 0.6) (right). Note that although we simulated the network consisting of 100 neurons (N = 100), the phase diagram was analytically obtained for N = ∞ (Aoki &
Aoyagi, 2011).

where φi and kij denote the phase of ith neuron and the coupling
strength from jth to ith neuron and we solely use ω = 1 and
ϵ = 0.005. The learning scheme can be controlled by β: Hebb-
rule for β ∼ −0.5, STDP rule for β ∼ 0, and anti-Hebb-rule for
β ∼ 0.5 (Figs. 1 and 2). We entirely used α = 0.3, although the
result did not change qualitatively when we used α = 0.1.

The base, undirected and sparse network was randomly
generated in the following way so that only limited coupling
strengths (kij) can take non-zero (Bollobas, 2001). To construct an
undirected graph, pairs of nodes were randomly connected with
probability p = 0.1. We used p = 0.1 because the network with
p ≫ 0.1 does not have loops of lengths longer than 3 (i.e., no
harmonic flow in Hodge–Kodaira decomposition) and the network
with p ≪ 0.1 gets disconnected (Kahle, 2009; Kahle & Meckes,
2013). Although we entirely used p = 0.1 in this paper, the result
did not change qualitatively when we used p = 0.05, 0.15, 0.2
and 0.25.When two nodes of the base network are connected, both
directions of couplings are allowed. Aswe avoid self-loops, the base
network has 100 nodes and 1000 directed edges (=500 undirected
edges).

The dimension of the (antisymmetric) ‘‘flow’’ was computed
as the number of non-zero couplings after the time evolution
where the initial coupling strengths and phases are randomized
uniformly. Note that we interchangeably use flows and directed
couplings in this paper. That is, the adjacency matrix consisting of

the coupling strengths K = {kij} is antisymmetrized as

A =
K − K t

2
, (2)

where t represents the transpose of a matrix. Then the dimension,
that is, the number of non-zero components divided by two,
of the antisymmetrized matrix, which represents the directed
components of connections, is computed. We judged a coupling
strength as non-zero when its absolute values are larger than
the threshold (=0.05). The result did not change qualitatively
when we used 0.2 for the threshold although we had smaller
dimensions. Similarly, for the dimension of the symmetric flows,
we computed the half number of non-zero component of the
symmetrized matrix:

S =
K + K t

2
. (3)

Note that any matrix can be decomposed into the symmetric and
antisymmetric matrices:

K = A + S. (4)

In the next subsection, we show that the antisymmetric matrix
can be further decomposed into three matrices uniquely by the
Hodge–Kodaira decomposition.
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