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a b s t r a c t

The state space of a conventional Hopfield network typically exhibits many different attractors of which
only a small subset satisfies constraints between neurons in a globally optimal fashion. It has recently
been demonstrated that combining Hebbian learning with occasional alterations of normal neural states
avoids this problem by means of self-organized enlargement of the best basins of attraction. However, so
far it is not clear to what extent this process of self-optimization is also operative in real brains. Here we
demonstrate that it can be transferred to more biologically plausible neural networks by implementing
a self-optimizing spiking neural network model. In addition, by using this spiking neural network to
emulate a Hopfield network with Hebbian learning, we attempt to make a connection between rate-
based and temporal coding based neural systems. Although further work is required to make this model
more realistic, it already suggests that the efficacy of the self-optimizing process is independent from
the simplifying assumptions of a conventional Hopfield network. We also discuss natural and cultural
processes that could be responsible for occasional alteration of neural firing patterns in actual brains.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The class of recurrent Hopfield neural networks, first described
by Hopfield (1982), has traditionally been employed for two dis-
tinct kinds of tasks. On the one hand, these networks can be trained
to form an associative memory of neural activity patterns. Neural
activity is set to the activation pattern to be memorized and Heb-
bian learning is applied in order to turn that pattern into an attrac-
tor. One drawback is that spurious attractors are easily formed and
these do not represent any target pattern. On the other hand, Hop-
field networks can also be used to find solutions to constraint satis-
faction problems (Hopfield & Tank, 1985). The connection weights
are set to represent the constraints between the components of the
target problem, the network’s activity is initialized to some start-
ing configuration, and the activity is then allowed to converge to
an attractor, which at the same time represents a possible solution
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to the problem represented by theweights. This process of conver-
gence can be understood as a coordination of component activity
so as to satisfy the most constraints given the starting configura-
tion. However, as is well known, the state space of a complex Hop-
field network typically exhibits many different attractors of which
only a small subset is globally optimal; the rest are local optima
that fail to take full advantage of the possibilities of coordination.

Watson, Buckley, and Mills (2011); Watson, Mills, and Buckley
(2011a) recently discovered that Hopfield networks that combine
these two tasks manage to overcome both types of drawbacks.
They modified the standard constraint satisfaction procedure by
making it iterative and including Hebbian learning. As per usual,
theweights of the network are set to represent a specific constraint
satisfaction problem. Then they used the following itinerant
routine: (1) the neural network activity is initialized to a random
configuration, (2) the activity is allowed to converge to an attractor,
and (3) after this point a small amount of Hebbian learning is
applied. What is the effect of repeating this three-step procedure?
As might be expected, the neural network forms an associative
memory. However, in this case it is not a memory of external
patterns, but rather of the different attractor configurations that
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the network has visited. Over time the network will thereby
reconfigure its weight space until most (if not all) initial activity
configurations lead to the same attractor, which happens to be one
of the best solutions to the original constraint satisfaction problem.

Two properties of Hopfield neural networks are responsible for
this useful self-optimization process. First, it has been proven that
there is a positive correlation between the width (localizability)
and depth (optimality) of a basin of attraction (Kryzhanovsky &
Kryzhanovsky, 2008),whichmeans that better constraint solutions
are visited comparatively more frequently and are therefore rein-
forced more often. Second, the self-optimization process takes ad-
vantage of the learning neural network’s ability to generalize over
the training set, i.e. the visited attractors. In this case the reinforce-
ment of spurious attractors is actually desirable. For as long as the
problem in weight space is decomposable in somemanner, the re-
inforcement of a visited attractor at the same time reinforces other
attractors that are partially composed of similar configurations—
even if the network has not previously encountered them after one
of the re-initializations. In this manner the basins of attraction of
still unvisited global optima will become enlarged, and therefore
more easily found, even if they are normally extremely difficult to
locate. This is effectively the same as if the neural network is trans-
lating its original constraint optimization problem into a higher-
dimensional organizational space to make it easier to solve, but
without making use of any a priori knowledge of the problem do-
main (Watson, Mills, & Buckley, 2011b).

Given the generality of the mathematics underlying the Hop-
field network, which is isomorphic to the famous class of Ising
models in statistical mechanics (Rojas, 1996, Ch. 13), as well as the
simplicity of the self-optimization process, we can expect this pro-
cess to govern the emergence of coordination in a wide range of
systems. Even the need for true Hebbian learning can be relaxed.
In the case of social systems it has been shown that habituation of
the behaviors that constitute attractor configurations is sufficient
to realize a similar structural self-optimization process (Davies,
Watson, Mills, Buckley, & Noble, 2011). Nevertheless, it remains
to be verified that the process proposed byWatson and colleagues
remains effective when it is implemented in more biologically re-
alistic neural networks, and to provide an interpretation of the nec-
essary periodic deviations from converged behavior (i.e., step 1).

In this work we created a spiking neural network model that
emulates the properties of a traditional Hopfield network with
saturated linear transfer (rather than binary threshold) functions,
and with real-valued (rather than integer) weights. Our main aim
was to demonstrate that the combination of Hebbian learningwith
occasional alteration of normal neural network activity also leads
to the emergence of global neural coordination in such a spiking
neural network. Although further modeling work is required to
confirm that this self-optimizing process can be operative in even
more realistic neural networks, here we managed to show that it
is independent of the simplifying assumptions of the conventional
Hopfield network. We only interpret the spiking network as a
Hopfield network in order to demonstrate that self-optimization
is indeed taking place in an equivalent manner.

Additionally, Hebbian learning is a rate-based learning method
and we have proposed a form of Hebbian learning in a timing
based system, by using heterosynaptic plasticity (Bailey, Giustetto,
Huang, Hawkins, & Kandel, 2000; Huang, Pittenger, & Kandel,
2004) and spike-timing dependent plasticity (STDP), equivalent
to that found in traditional Hopfield networks, thus making a
connection between rate-based and temporal neural encoding sys-
tems. Temporal coding based systems have a number of advan-
tages such as not being affected by synaptic depression and being
able to achieve a high rate of computation at biological realistic
firing rates (Maass & Natschlaeger, 1997). In the same paper, Mass
et al. have pointed out that from recent experiments ‘it is in fact

questionable whether biological neural systems are able to carry
out analog computation with analog variables represented as fir-
ing rates’ (p. 355).

The rest of this article unfolds as follows. First, we discuss our
methods inmore detail, paying special attention to howweapplied
the ideas gained from studieswith Hopfield neural networks to the
spiking neural network model. Second, we present the results of
our investigation, which demonstrate that Hopfield dynamics and
the process of self-optimization of neural coordination identified
by Watson and colleagues is also effective in spiking neural
networks. Finally, we evaluate the plausibility of the spiking neural
network model when compared to real nervous systems. We also
briefly discuss what could be the natural and cultural causes of
occasional alteration of normal neural activity in human brains.

2. Methods

The large number of recurrent connections in the brain seems
to be the mechanism behind its associative memory capabilities. A
well known computational neural network architecture that also
exhibits such properties is the Hopfield network, first described
in Hopfield (1982), and with graded neuron response in Hopfield
(1984). In the followingwe showhow it is possible to transfer some
of the key concepts of the Hopfield network to a biologically more
realistic spiking neural network.

In early versions of the Hopfield network (Hopfield, 1982) the
binary state of a neuron was taken to abstractly represent whether
that neuron was not firing (0) or firing at maximum rate (1). In
later versions (Hopfield & Tank, 1985), as well as in more recent
elaborations of this kind of network architecture such as including
negative self-feedback (Nozawa, 1992), or the continuous-time
recurrent neural network (Beer, 1995), a nonlinear function of a
neuron’s state is typically interpreted to be its mean firing rate.

It is therefore reasonable to assume that, conversely, the firing
rate of a spiking neuron can be interpreted as the state of a tra-
ditional Hopfield neuron. However, as alluded to in the introduc-
tion, doubt has been raised as towhether firing rates in a biological
neural systemwould be even appropriate for carrying out Hopfield
network dynamics. Since temporal coding systems have the po-
tential to achieve a high rate of computation at biological realistic
firing rates we therefore describe a way to implement Hopfield
network dynamics using temporal coding in a spiking neural net-
work.

To measure constraint satisfaction by means of neural coordi-
nation, the spike-timing encoding of analog values can then be
inserted into the Hopfield energy function where attractor states
of the network correspond to local minima in the energy land-
scape (by convention, larger negative values in the Hopfield energy
function are more optimal). Our proposed heterosynaptic Heb-
bian learning approach, described in Section 2.3.3, can then be
used to update weights in the spiking network as part of the self-
optimization process.

2.1. The Hopfield network

A Hopfield network is a fully interconnected neural network,
usually with symmetric connections between nodes, where H
represents the network state: H = ⟨s1, . . . , sn⟩ ∈ [0, 1]n.

Hopfield dynamics can be described through updates to neuron
states; for the ith neuron si:

si(t + 1) = θ


N
j

ωijsj(t)


(1)

where ωij is the weight between neurons i and j, collectively de-
scribed by Ω = ⟨ω1, . . . , ωn⟩ ∈ [−1, 1]n and θ is a transfer
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