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a b s t r a c t

Although the phase shifts in ongoing oscillations seen in electroencephalograms (EEGs) and magnetoen-
cephalograms are an important factor in discussions of phase dynamics, such as synchrony and reset, few
studies have focused specifically on the phase shift. Here we investigate the relationship between phase
shifts in alpha-frequency rhythms and reaction times during a visual simple reaction task by applying our
previously described method (Naruse et al., 2013), which enables detection of phase shifts from a single
EEG trial. In the left, parietal, and occipital areas, the reaction times in the trials inwhich phase shifts were
detected before the button press were significantly longer than in those in which phase shifts were not
so detected. These results indicate that phase shifts in the alpha and mu rhythms relate to variability in
reaction times.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The ongoing oscillations, i.e., alpha, beta, gamma, theta, and
mu rhythms, seen in electroencephalograms (EEGs) and magne-
toencephalograms (MEGs) exhibit a feature that has recently been
gaining attention: they are synchronized (Lachaux, Rodriguez,
Martinerie, & Varela, 1999; Mizuhara & Yamaguchi, 2007; Ro-
driguez et al., 1999; Varela, Lachaux, Rodriguez, & Martinerie,
2001) and reset (Makeig et al., 2002; Naruse, Matani, Hayakawa, &
Fujimaki, 2006; Palva & Palva, 2007) by external stimuli. Although
these oscillations include both amplitude and phase components,
here we focus on the latter because phase is the most important
factor in discussing synchrony and reset. In phase synchronization,
the phases are shifted by external stimuli so that they are syn-
chronized across more than two brain regions. In phase reset, the

∗ Correspondence to: National Institute of Information and Communications
Technology, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe 651-2492, Japan. Tel.: +81
78 969 2225; fax: +81 78 969 2279.

E-mail address: y_naruse@nict.go.jp (Y. Naruse).

phases are rapidly changed by external stimuli. Thus, the ability to
detect phase shifts is essential to understanding these phenomena.

To detect these shifts – in particular, phase resets – some
previous studies have averaged data from many trials because of
the low signal-to-noise ratio of EEG andMEG signals (Makeig et al.,
2002; Naruse et al., 2006). The averaging method can detect only
the phase-locking type of shifts that occur with similar timings
over many trials. Other studies have detected phase shifts from
single-trial data by using the Hilbert transform (Freeman, Burke,
& Holmes, 2003; Kozma, Davis, & Freeman, 2012). However, phase
shifts detected with this method have tended to concentrate
in low-amplitude intervals (Freeman et al., 2003), raising the
suspicion that they may be artifacts, perhaps caused by a loss
of precision in the low-amplitude data. In an earlier study, we
reported a novel statistical method that can detect phase shifts in
the alpha rhythm from a single EEG trial (Naruse, Takiyama, Okada,
& Umehara, 2013). This method uses state-space models (SSMs)
and the line-process (LP) technique (Geman & Geman, 1984). The
LP technique is a Bayesian method that can detect discontinuous
changes in time series data. One important feature of ourmethod is
that it detects phase shifts most effectively when the amplitude is
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high and, accordingly, avoids false detections owing to imprecision
in low-amplitude data (Naruse et al., 2013). However, the feature
tends to increase themiss of the detection of the phase shift in low-
amplitude data. The results from flash–response EEG data showed
that there are non-phase-locking shifts that occur at differing times
among trials, which cannot be detected by the averaging method.
Our previous work mentioned only the dynamics of the phase
shifts in the alpha rhythm; the functional role of these shifts in the
alpha rhythm remains unclear.

Several studies have revealed the relationship between the
phase of the alpha rhythm at stimulus onset and brain function,
such as visual awareness (Mathewson, Gratton, Fabiani, Beck, & Ro,
2009), perceptual framing (Varela, Toro, John, & Schwartz, 1981),
and reaction times (RTs) (Callaway & Yeager, 1960). In this study,
we focus on the influence of the phase of the alpha rhythm on RTs
because this problem has been outstanding since 1960. Callaway
and Yeager first reported that the phase of the alpha rhythm at
stimulus onset significantly influences RTs during a visual simple
reaction task, and they concluded with the observation that ‘‘finer
details of the relationship between alpha phase and reaction
time must wait further investigation’’ (Callaway & Yeager, 1960).
Decades afterward, the finer details are still unclear.

To our knowledge, there is no study that discusses the
relationship between phase shifts in the alpha rhythm and RTs. By
focusing on the influence of phase shifts on RTs, we expect that
the functional role of these shifts can be elucidated. For instance,
Freeman et al. have hypothesized that phase shifts represent state
transitions in the brain (Freeman et al., 2003). If this is the case,
then the RTs in a trial in which a phase shift is detected before a
button press could differ from those in a trial that detects no such
shift.

While the alpha rhythm occurs over the posterior regions of the
brain, there is another rhythm at the alpha frequency (8–13 Hz)
that occurs over the central or centro-parietal region, the mu
rhythm, which relates to motor control (Chatrian et al., 1974).
Phase shifts in themu rhythm alsomay be connected to RTs. In this
study, we investigate the relationship between phase shifts in the
rhythms of alpha frequency and RTs during a visual simple reaction
task.

2. Method

2.1. Phase-shift detection in a single trial

Our method for detecting phase shifts in a single trial was
proposed in Naruse et al. (2013), to which we refer the reader for
more details.

The EEG data at the sampling point k is denoted by yk.
We assume that yk includes the alpha-frequency rhythm and
independent observation noise between sampling points. Thus,
it is expressed as yk = ak cos xk + ξ , where xk and ak denote the
instantaneous phase and amplitude of the rhythm of the alpha
frequency at sampling point k, respectively, and ξ denotes the
observation noise. Note that the domain of the phase is [0, 2π)
and that of the amplitude is [0, ∞). Here we assume the noise is
Gaussian, and hence the likelihood function is

p(yk|ak, xk, α) =


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where α is a hyperparameter that controls the strength of the
observation noise. We define the prior distribution of the phase
using the von Mises distribution and the SSM as
p(x, lp|β, ω, κ)
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and Zp(β, κ) indicate the instantaneous phase, the parameter for
the phase shift based on the LP technique, and the normalization
constant of p(x, lp|β, ω, κ), respectively. The hyperparameters
β, ω, and κ control the amount of phase fluctuation, the individual
alpha frequency, and the frequency of the phase shift, respectively.
N is the number of sampling points; lpk = 1 indicates the occur-
rence of a phase shift in the time bin between the kth and (k+1)st
sampling points, and lpk = 0 indicates a smooth phase change.

Similarly, we define the prior distribution of the amplitude
using the Gaussian distribution and the SSM as

p(a, la|γ , λ)
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where a = {a1, a2, . . . , aN}, la = {la1, l
a
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and Za(γ , λ) indicate the instantaneous amplitude, the parameter
for the amplitude shift based on the LP technique, and the normal-
ization constant of p(a, la|γ , λ), respectively; the hyperparame-
ters γ and λ control the magnitude of the amplitude fluctuation
and the frequency of the amplitude shift, respectively. Similarly to
the case of the phase shift, lak = 1 indicates the occurrence of an
amplitude shift and lak = 0 indicates a smooth amplitude change at
the time bin between the kth and (k + 1)st sampling points.

Assuming that the prior distributions of the phase and ampli-
tude are independent, we can express the posterior distribution
based on Bayes’ theorem as

p(a, x, lp, la|y, α, β, γ , ω, κ, λ)

=
p(y|a, x, α)p(x, lp|β, ω, κ)p(a, la|γ , λ)

Z(α, β, γ , ω, κ, λ)
, (4)

where Z(α, β, γ , ω, κ, λ), which is equal to p(y|α, β, γ , ω, κ, λ),
is the normalization constant of p(a, x, lp, la|y, α, β, γ , ω, κ, λ).

We estimated the hyperparameters on the basis of type II
maximum likelihood estimation. Their estimated values are

{α̂, β̂, γ̂ , ω̂, κ̂, λ̂} = arg
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where H indicates the number of trials.
When marginalizing the posterior distribution between sam-

pling points k and k + 1, we can calculate the probabilities of four
states:

(S1) Both the phase and amplitude are smooth [p(lpk = 0, lak =

0) = p(lpk = 0) × p(lak = 0)];
(S2) Only the phase is shifted [p(lpk = 1, lak = 0) = p(lpk = 1)p(lak =

0)];
(S3) Only the amplitude is shifted [p(lpk = 0, lak = 1) = p(lpk =

0)p(lak = 1)]; and
(S4) Both are shifted [p(lpk = 1, lak = 1) = p(lpk = 1)p(lak = 1)].

By comparing the probabilities of these four states,we can estimate
the state at each time bin. In this study, we focus on the phase shift,
and therefore, we define a phase shift to have been detected in the
bin between sampling points k and k+1 if S2 or S4 has the highest
probability among the four states.

2.2. EEG experiments

We used the data described in Naruse, Takiyama, Okada, and
Murata (2010). EEGdata fromsix clinically normal adult volunteers
with their eyes closed were recorded. None of the subjects
had any history of relevant neurological or visual disorders. All
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