Neural Networks 42 (2013) 83-93

journal homepage: www.elsevier.com/locate/neunet

Contents lists available at SciVerse ScienceDirect

Neural Networks

Learning in compressed space

Alexander Fabisch®*, Yohannes Kassahun?, Hendrik Wohrle®, Frank Kirchner P

2 University of Bremen, Fachbereich 3 - Mathematik und Informatik, Postfach 330 440, 28334 Bremen, Germany
b Robotics Innovation Center, German Research Center for Artificial Intelligence (DFKI), Robert-Hooke-Str. 5, 28359 Bremen, Germany

ARTICLE INFO ABSTRACT

Article history:
Received 1 October 2012
Revised and accepted 29 January 2013

Keywords:

Model compression
Compressed sensing
Artificial neural networks
Supervised learning
Reinforcement learning

We examine two methods which are used to deal with complex machine learning problems: compressed
sensing and model compression. We discuss both methods in the context of feed-forward artificial neural
networks and develop the backpropagation method in compressed parameter space. We further show
that compressing the weights of a layer of a multilayer perceptron is equivalent to compressing the
input of the layer. Based on this theoretical framework, we will use orthogonal functions and especially
random projections for compression and perform experiments in supervised and reinforcement learning
to demonstrate that the presented methods reduce training time significantly.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Artificial intelligence is facing real world problems and thus
machine learning problems become more and more complex.
Bengio and Lecun (2007) state that “a long-term goal of machine
learning research is to produce methods that will enable artificially
intelligent agents capable of learning complex behaviors with
minimal human intervention and prior knowledge”. As a result,
even more effort is shifted from human to machine.

Complex machine learning problems comprise learning com-
plex behaviors like visual and auditory perception and natural lan-
guage processing as mentioned by Bengio and Lecun (2007) as well
as dealing with highly noisy data such as electroencephalography
(EEG) signals and learning behavior and perception for complex
robots with many actuators and sensors. Examples for complex
robots that have many actuators and sensors are ASGUARD (Eich,
Grimminger, & Kirchner, 2008), SCORPION (Spenneberg & Kirch-
ner, 2007) and SpaceClimber (Bartsch et al., 2010; Rémmerman,
Kithn, & Kirchner, 2009). A common characteristic of complex
problems is an associated large amount of data, which includes
a large input space dimension and/or a large training set. For ex-
ample, vision problems usually have hundreds to millions of input
components as well as thousands of training examples to cover all
possible distortions and a typical brain-computer interface (BCI)

* Corresponding author. Tel.: +49 1633143315.

E-mail addresses: afabisch@googlemail.com,
afabisch@informatik.uni-bremen.de (A. Fabisch),
kassahun@informatik.uni-bremen.de (Y. Kassahun), Hendrik.Woehrle@dfki.de
(H. Wohrle), Frank Kirchner@dfki.de (F. Kirchner).

0893-6080/$ - see front matter © 2013 Elsevier Ltd. All rights reserved.
doi:10.1016/j.neunet.2013.01.020

(Wolpaw, Birbaumer, McFarland, Pfurtscheller, & Vaughan, 2002)
can sample 128 channels with 5 kHz.

Complex problems usually result in long training times. We
will now consider ways that reduce the training time. There
are numerous ways of dealing with large input spaces that
reduce the training time. Examples include methods of feature
selection (Guyon & Elisseeff, 2003), dimensionality reduction
or feature extraction. These methods require in most cases at
least some domain specific knowledge and a manually designed
preprocessing flow. But developments that reduce the need for
human expertise and intervention such as convolutional neural
networks (CNNs) (LeCun & Bengio, 1995) or deep belief neural
networks (DBNs) (Bengio, 2007) exist as well. The first layers of
these kinds of neural networks can be seen as trainable feature
extractors, which can be used to cope with large input spaces.
This way of dealing with machine learning problems is better
because information cannot be lost unintentionally when (almost)
unprocessed data is used as input for the learning algorithm.

Another way of avoiding unintentional loss of information is
using conventional machine learning algorithms without built-
in preprocessing on raw data. But this is computationally more
challenging and requires lots of optimizations, in particular during
the training. In this article we want to present novel approaches
that can deal with complex machine learning problems. In
particular, we want to show how to reduce the time needed to train
feed-forward neural networks.

We consider only multilayer perceptrons (MLPs) here to
demonstrate two ways of simplifying machine learning optimiza-
tion problems: model compression and data compression. Advan-
tages of MLPs are that they are universal function approximators
(Hornik, Stinchcombe, & White, 1989) and they are simple in con-
cept, well-known and widely used. Since MLP layers are contained


http://dx.doi.org/10.1016/j.neunet.2013.01.020
http://www.elsevier.com/locate/neunet
http://www.elsevier.com/locate/neunet
mailto:afabisch@googlemail.com
mailto:afabisch@informatik.uni-bremen.de
mailto:kassahun@informatik.uni-bremen.de
mailto:Hendrik.Woehrle@dfki.de
mailto:Frank.Kirchner@dfki.de
http://dx.doi.org/10.1016/j.neunet.2013.01.020

84 A. Fabisch et al. / Neural Networks 42 (2013) 83-93

in CNNs and the backpropagation method is also used in DBNs, we
think that this restriction is justifiable. In addition, the presented
concepts can be extended to many other learning algorithms. One
of these learning algorithms is the support vector machine (SVM)
(Boser, Guyon, & Vapnik, 1992; Vapnik, 1995). We can combine
SVMs and data compression easily and use SVMs to compare them
to MLPs in this article.

The source code for most of the experiments we present
here is available online at https://github.com/AlexanderFabisch/
OpenANN.

2. Related work

We will first give a short overview of the foundations of our
work, which include two research branches. In addition, we will
discuss related ideas.

We call the first research branch “model compression”. Schmid-
huber (1995, 1997) developed a universal network encoding lan-
guage (NEL) to represent neural networks in a compressed form for
supervised learning. This was motivated by the search for the best
generalizing network, because the simplest hypothesis that fits the
training instances should give the best generalization for the la-
tent function. Since the NEL is not continuous it was not possible
to use efficient optimization algorithms for this compressed repre-
sentation. This was the reason for Koutnik, Gomez, and Schmidhu-
ber (20104, 2010b) to develop a continuous representation, where
the weights of a recurrent neural network with fixed topology
are represented by coefficients of an inverse discrete cosine trans-
form. The focus of their work was reinforcement learning (Sutton &
Barto, 1998). Therefore, they presented experiments with the evo-
lutionary optimization algorithm CoSyNE (Gomez, Schmidhuber, &
Miikkulainen, 2008). The main goal in this research is the increase
of sample efficiency, that is the reduction of episodes needed to
learn a good or successful policy. We will present a very similar
approach in this article. However, there will be some differences:

e We will focus on feed-forward neural networks, and hence
extend the standard backpropagation procedure for learning in
compressed space.

e Not only a combination of orthogonal cosine functions, but
any kind of orthogonal functions and even randomly generated
values can be used to generate the weights. Hence, we will
provide a more general framework for model compression.

e Koutnik et al. (2010a, 2010b) compress all weights of a neural
network with the same coefficients, although they already
mention that it would be better to have a distinct set of
coefficients for each neuron. We will use a distinct set of
coefficients for each neuron to generate all incoming weights.

The second research branch is the so-called “compressed
sensing” (Candés & Romberg, 2005; Donoho, 2006). In compressed
sensing, sparse or compressible data is examined. It is possible
to compress compressible data through random projections and
reconstruct it with high probability by solving an optimization
problem. In combination with machine learning it can be used as
a preprocessing method that requires almost no prior knowledge.
In particular, the method does not need to compute any features
from the training set. Compressed sensing has for example been
combined with support vector machines by Calderbank, Jafarpour,
and Schapire (2009) and least squares regression by Maillard and
Munos (2009). In these cases the reconstruction is not necessary.
It is instead assumed that it is possible to distinguish the instances
in compressed space because we could reconstruct the original
data with high probability. This is true because random projections
approximately preserve distances between instances Bingham and
Mannila (2001). Random projections are a very powerful technique
to overcome the curse of dimensionality when approximate

Convolutional Layer

Input feature map

 Kernel . 7 K 9

w | w, Output feature map

ety > Yy Y2
w, o ow, | .

Yz Yq

Fig. 1. Convolutional layer of a convolutional neural network. The input feature
map is convolved with a parameterizable kernel to create the output. For example,
the first entry of the output feature map is y; = wiXy + waXy + W3X4 + WaXs.

solutions are sufficient. This has for example been proven for
similarity search as well (see locality-sensitive hashing (Indyk &
Motwani, 1998, Gionis, Indyk, & Motwani, 1999)).

We have already shown in a previous paper (Kassahun, Wohrle,
Fabisch, & Tabie, 2012) that compressed sensing and compressing
the weights of a neural network that has no hidden layer
(single layer perceptron, SLP) are mathematically equivalent. As a
contribution to the state of the art, we will show that compressing
the weight matrix of any fully connected layer is equivalent to
compressing the input to that layer.

Our goal is to reduce training time by reducing the number
of parameters that we have to optimize for a neural network.
There are other approaches in machine learning that have the
same goals and could be combined with the methods we present
here. Two ways to do this with neural networks are weight
sharing and sparse connections, which are actually forms of model
compression. Prominent examples that combine both methods
are CNNs (LeCun & Bengio, 1995). These have been particularly
successful in recognizing objects in images such as traffic signs
(Ciresan, Meier, Masci, & Schmidhuber, 2011). All kinds of CNNs
consist of at least one convolutional layer. A very simple example
is shown in Fig. 1. In this convolutional layer, we have a two-
dimensional input with 3 x 3 entries and a two-dimensional output
with 2 x 2 entries. These are called feature maps. The input is
convolved with a 2 x 2 kernel to obtain the output. We can
construct a fully connected layer, that computes the same output
through

Y1 X1
Y2
=W- , 1
Y3 (1)
4 X9

where W is the weight matrix

w1 wy 0 w3 W4 0 0 0 0
0 wy wp, 0 w3 wyg O 0 0 2)
0 0 0 w1 wy 0 w3 Wy 0 :

0 0 0 0 wy wy 0 w3 wy

W =

It is obvious that W is sparse and the weights w1, ..., w4 occur
in more than one row in this matrix, that is, they are shared
among neurons. As a result, we can say that the weight matrix
W is generated by a transformation of the convolution kernel.
We can make a similar statement about any kind of convolutional
layer: the weight matrix of a convolutional layer is generated from
less parameters by a transformation. Why this is a form of model
compression will become clear at the end of Section 4.1.


https://github.com/AlexanderFabisch/OpenANN
https://github.com/AlexanderFabisch/OpenANN
https://github.com/AlexanderFabisch/OpenANN
https://github.com/AlexanderFabisch/OpenANN
https://github.com/AlexanderFabisch/OpenANN

Download English Version:

https://daneshyari.com/en/article/404185

Download Persian Version:

https://daneshyari.com/article/404185

Daneshyari.com


https://daneshyari.com/en/article/404185
https://daneshyari.com/article/404185
https://daneshyari.com

