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a b s t r a c t

Wavelet networks (WNs) are a new class of networks which have been used with great success in a
wide range of applications. However a general accepted framework for applyingWNs is missing from the
literature. In this study,we present a complete statisticalmodel identification framework in order to apply
WNs in various applications. The following subjects were thoroughly examined: the structure of a WN,
trainingmethods, initialization algorithms, variable significance and variable selection algorithms, model
selection methods and finally methods to construct confidence and prediction intervals. In addition the
complexity of each algorithm is discussed. Our proposed frameworkwas tested in two simulated cases, in
one chaotic time series described by the Mackey–Glass equation and in three real datasets described by
daily temperatures in Berlin, daily wind speeds in New York and breast cancer classification. Our results
have shown that the proposed algorithms produce stable and robust results indicating that our proposed
framework can be applied in various applications.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Wavelet networks are a new class of networks that combine
the classic sigmoid neural networks (NNs) and thewavelet analysis
(WA). WNs have been used with great success in a wide range of
applications. However a general accepted framework for applying
WNs is missing from the literature. In this study, we present
a complete statistical model identification framework in order
to apply WNs in various applications. To our knowledge we
are the first to do so. Although a vast literature about WNs
exists, to our knowledge this is the first study that presents
a step by step guide for model identification for WNs. Model
identification can be separated in two parts, model selection and
variable significance testing. In this study a framework similar
to the one proposed by Zapranis and Refenes (1999) for the
classical sigmoid NNs is adapted. More precisely, the following
subjects were thoroughly examined: the structure of a WN,
training methods, initialization algorithms, variable significance
and variable selection algorithms, model selection methods and
finally methods to construct confidence and prediction intervals.
Only in Iyengar, Cho, and Phoha (2002) some of these issues are
studied to some extent.

WA has proved to be a valuable tool for analyzing a wide range
of time-series and has already been used with success in image
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processing, signal de-noising, density estimation, signal and image
compression and time-scale decomposition. WA is often regarded
as a ‘‘microscope’’ in mathematics, (Cao, Hong, Fang, & He, 1995),
and it is a powerful tool for representing nonlinearities, (Fang &
Chow, 2006). The major drawback of the WA is that it is limited
to applications of small input dimension. The reason is that the
construction of awavelet basis is computationally expensivewhen
the dimensionality of the input vector is relatively high, (Zhang,
1997).

On the other hand NNs have the ability to approximate any
deterministic non-linear process, with little knowledge and no
assumptions regarding the nature of the process. However the
classical sigmoid NNs have a series of drawbacks. Typically,
the initial values of the NN’s weights are randomly chosen.
Random weight initialization is generally accompanied with
extended training times. In addition, when the transfer function
is of sigmoidal type, there is always significant change that
the training algorithm will converge to local minima. Finally,
there is no theoretical link between the specific parameterization
of a sigmoidal activation function and the optimal network
architecture, i.e. model complexity (the opposite holds true for
WNs).

In Pati and Krishnaprasad (1993) it has been demonstrated that
it is possible to construct a theoretical formulation of a feedforward
NN in terms of wavelet decompositions. WNs were proposed
by Zhang and Benveniste (1992) as an alternative to feedforward
NNs which would alleviate the aforementioned weaknesses
associated with each method. The WNs are a generalization
of radial basis function networks (RBFN). WNs are one hidden
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layer networks that use a wavelet as an activation function,
instead of the classic sigmoidal family. It is important to mention
here that the multidimensional wavelets preserve the ‘‘universal
approximation’’ property that characterizes NNs. The nodes (or
wavelons) of WNs are the wavelet coefficients of the function
expansion that have a significant value. In Bernard, Mallat, and
Slotine (1998) various reasons were presented in why wavelets
should be used instead of other transfer functions. In particular,
firstly, wavelets have high compression abilities, and secondly,
computing the value at a single point or updating the function
estimate from a new local measure, involves only a small subset
of coefficients.

WNs have been used in a variety of applications so far,
i.e. in short term load forecasting, (Bashir & El-Hawary, 2000;
Benaouda, Murtagh, Starck, & Renaud, 2006; Gao & Tsoukalas,
2001; Ulugammai, Venkatesh, Kannan, & Padhy, 2007; Yao,
Song, Zhang, & Cheng, 2000), in time series prediction, (Cao
et al., 1995; Chen, Yang, & Dong, 2006; Cristea, Tuduce, &
Cristea, 2000), signal classification and compression, (Kadambe &
Srinivasan, 2006; Pittner, Kamarthi, & Gao, 1998; Subasi, Alkan,
Koklukaya, & Kiymik, 2005), signal denoising, (Zhang, 2007), static,
dynamic (Allingham,West, & Mees, 1998; Oussar & Dreyfus, 2000;
Oussar, Rivals, Presonnaz, & Dreyfus, 1998; Pati & Krishnaprasad,
1993; Postalcioglu & Becerikli, 2007; Zhang & Benveniste, 1992),
and nonlinear modeling, (Billings & Wei, 2005), nonlinear static
function approximation, (Jiao, Pan, & Fang, 2001; Szu, Telfer, &
Kadambe, 1992; Wong & Leung, 1998), to mention the most
important. In Khayamian, Ensafi, Tabaraki, and Esteki (2005) WN
were even proposed as a multivariate calibration method for
simultaneous determination of test samples of copper, iron, and
aluminum.

In contrast to classical ‘‘sigmoid NNs’’, WNs allow for construc-
tive procedures that efficiently initialize the parameters of the net-
work. Using wavelet decomposition a ‘‘wavelet library’’ can be
constructed. In turn, each wavelon can be constructed using the
best wavelet of the wavelet library. The main characteristics of
these procedures are: (i) convergence to the globalminimumof the
cost function, (ii) initial weight vector into close proximity of the
globalminimum, and as a consequencedrastically reduced training
times, (Zhang, 1997; Zhang & Benveniste, 1992). In addition, WNs
provide information for the relative participation of each wavelon
to the function approximation and the estimated dynamics of the
generating process. Finally, efficient initializationmethodswill ap-
proximate the same vector of weights that minimize the loss func-
tion each time.

In Zapranis and Alexandridis (2008) and Zapranis and Alexan-
dridis (2009) we give a concise treatment of wavelet theory. For a
complete theoretical background on wavelets and wavelet analy-
sis refer to (Daubechies, 1992; Mallat, 1999). Here the emphasis is
in presenting the theory and mathematics of wavelet neural net-
works.

The rest of the paper is organized as follows. In Section 2 we
present the WN. More precisely in Section 2.1 the structure of
a WN is described. In Section 2.2 various initialization methods
were described. In Section 2.3 a training method of the WN is
presented and in Section 2.4 the stopping conditions of the training
are described. In Section 2.5 the various initialization methods are
compared and evaluated. A model selection algorithm is described
in Section 3 and is evaluated in two cases in Section 3.1. Next,
various criteria for selecting significant variables are presented
while a variable selection algorithm is analytically presented in
Section 4.1. In Section 4.2 the proposed algorithm is evaluated
in two cases. In Section 5 methods to estimate the model and
variance uncertainty are described. In Section 5.1 a framework for
constructing confidence intervals is presented while in Section 5.2
a framework for constructing prediction intervals is presented. In

Section 5.3 the proposed framework for constructing confidence
and prediction intervals is evaluated in two cases. In Section 6
the proposed framework is applied in real data described by
temperature in Berlin. Similarly, our framework is applied in wind
speed data in Section 7. In Section 8 aWN is constructed for breast
cancer classification while in Section 9 the proposed framework
is applied in modeling and predicting the chaotic Mackey–Glass
equation. Finally, in Section 10 we conclude.

2. Wavelet neural networks for multivariate process modeling

2.1. Structure of a wavelet network

In this section the structure of aWN is presented and discussed.
AWNusually has the formof a three layer network. The lower layer
represents the input layer, themiddle layer is the hidden layer and
the upper layer is the output layer.

In the input layer the explanatory variables are introduced
to the WN. The hidden layer consists of the hidden units (HUs).
The HUs are often referred as wavelons, similar to neurons in
the classical sigmoid NNs. In the hidden layer the input variables
are transformed to dilated and translated version of the mother
wavelet. Finally, in the output layer the approximation of the target
values is estimated.

The idea of a WN is to adapt the wavelet basis to the training
data. Hence, the wavelet estimator is expected to bemore efficient
than a sigmoid NN, (Zhang, 1993). In Billings and Wei (2005),
Kadambe and Srinivasan (2006), Mellit, Benghamen, and Kalogirou
(2006), Xu and Ho (1999) an adaptive WN was used. In Chen et al.
(2006) a local linear WN was proposed. The difference is that the
connections weights between the hidden layer and output layer
are replaced by a local linear model. In Fang and Chow (2006) and
Jiao et al. (2001) a multiwavelet NN is proposed. In this structure,
the activation function is a linear combination of wavelet bases
instead of the wavelet function. During the training phase, the
weights of all wavelets are updated. The multiwavelet NN is also
enhanced by the DWT. Their results indicate that the proposed
model increases the approximation capability of the network. In
Khayamian et al. (2005) a principal component-wavelet NN was
introduced. In this context, first principal component analysis
(PCA) has been applied to the training data in order to reduce the
dimensionality. Then a WN was used for function approximation.
In Zhao, Chen, and Shen (1998) a multidimensional wavelet-basis
function NN was used. More precisely (Zhao et al., 1998) use
a multidimensional wavelet function as the activation function
in the hidden layer. Then the sigmoid function was used as an
activation function in the output layer. (Becerikli, 2004) proposes
a network with unconstrained connectivity and with dynamic
elements (lag dynamics) in its wavelet processing units called
dynamic WN.

In this study, we implement a multidimensional WN with a
linear connection between thewavelons and the output.Moreover,
in order for the model to perform well in the presence of linearity,
we use direct connections from the input layer to the output layer.
Hence, a network with zero HUs is reduced to the linear model.

The structure of a single hidden-layer feedforwardWN is given
in Fig. 1. The network output is given by the following expression:

gλ(x;w) = ŷ(x) = w
[2]
λ+1 +

λ
j=1

w
[2]
j · Ψj(x)+

m
i=1

w
[0]
i · xi. (1)

In that expression, Ψj(x) is a multidimensional wavelet which is
constructed by the product of m scalar wavelets, x is the input
vector,m is the number of network inputs, λ is the number of HUs
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