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a b s t r a c t

We propose an approach to synthesizing high-complexity rhythmic signals for closed-loop electrical
neuromodulation using cognitive rhythm generator (CRG) networks, wherein the CRG is a hybrid
oscillator comprised of (1) a bank of neuronal modes, (2) a ring device (clock), and (3) a static output
nonlinearity (mapper). Networks of coupled CRGs have been previously implemented to simulate the
electrical activity of biological neural networks, including in silico models of epilepsy, producing outputs
of similar waveform and complexity to the biological system. This has enabled CRG networkmodels to be
used as platforms for testing seizure control strategies. Presently, we take the application one step further,
envisioning therapeutic CRG networks as rhythmic signal generators creating neuromimetic signals for
stimulation purposes, motivated by recent research indicating that stimulus complexity and waveform
characteristics influence neuromodulation efficacy. To demonstrate this concept, an epileptiform CRG
network generating spontaneous seizure-like events (SLEs) was coupled to a therapeutic CRG network,
forming a closed-loop neuromodulation system. SLEs are associated with low-complexity dynamics and
high phase coherence in the network. The tuned therapeutic network generated a high-complexity,multi-
banded rhythmic stimulation signal with prominent theta and gamma-frequency power that suppressed
SLEs and increased dynamic complexity in the epileptiform network, as measured by a relative increase
in the maximum Lyapunov exponent and decrease in phase coherence. CRG-based neuromodulation
outperformed both low and high-frequency periodic pulse stimulation, suggesting that neuromodulation
using complex, biomimetic signals may provide an improvement over conventional electrical stimulation
techniques for treating neurological disorders such as epilepsy.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Neuromodulation by electrical stimulation was initially con-
ceived to treat debilitating pain (Gildenberg, 2006). Nowadays,
the definition of electrical neuromodulation has expanded to
encompass varieties of electrical stimulation targeting motor con-
trol, sensory perception and cognition, whereby stimulation is
delivered to counter the effects of disability or pathology com-
promising such functions. For example, functional electrical stim-
ulation (FES) is a technique that modulates nerve activity in the
extremities in order to restore lost motor function due to paraly-
sis (Popovic et al., 2011; Thrasher & Popovic, 2008; Thrasher, Zi-
vanovic, McIlroy, & Popovic, 2008). Similarly, pathological motor
traits caused by Parkinson’s and dystonia have been successfully
treated using deep brain stimulation (DBS) (Lozano, 2001; Toda,
Hamani, & Lozano, 2004), which involves surgical implantation of
electrodes delivering electrical pulses to limbic and midline struc-
tures of the brain, such as the subthalamic nucleus. DBS has also
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been favorably indicated for disorders that can alter or otherwise
impair cognition, such as epilepsy and depression (Loddenkemper
et al., 2001; Mayberg et al., 2005).

For the treatment of epilepsy, most studies involving DBS
have implemented open-loop periodic pulse stimulation in which
the waveform and frequency of stimulation do not vary over
time (Hamani, Andrade, Hodaie, Wennberg, & Lozano, 2009),
and whose programmable parameters include amplitude, pulse
width, duty cycle and frequency. Recently, however, several
groups turned to investigating closed-loop modes of electrical
pulse stimulation. Closed-loop systems require a brain–computer
interface (BCI) to record and process data on-line and to
subsequently deliver an appropriately modified stimulus back to
the subject. The increased complexity of the stimulator appears
to be compensated for by superior performance. In several studies
by Osorio and colleagues, patients were administered closed-loop
high-frequency stimulation (HFS)(> 100 Hz) at the seizure focus,
with stimulation being activated automatically when a seizure
was detected (Osorio et al., 2001, 2005; Peters, Bhavaraju, Frei, &
Osorio, 2001). Patients with bilateral seizure foci had stimulation
delivered to the anterior thalamic nucleus (AN). A mean decrease
of 55% in the locally-stimulated group (ranging from 100% at best
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to −36.8% at worst) was achieved, with of 3 of the 4 patients
collectively experiencing an 86% reduction in seizure frequency,
whereas the AN stimulated group had a 40.8% mean reduction in
seizure occurrence (ranging from 75.6% to −1.4%) (Osorio et al.,
2005). In several longitudinal studies, similar benefits were noted
in patients who had responsive stimulators implanted for several
months or longer (Fountas & Smith, 2007; Fountas et al., 2005;
Kossoff et al., 2004; Sun, Morrell, & Wharen, 2008).

These promising results provide an impetus for further inves-
tigation and development of closed-loop stimulation paradigms.
However, the variability in individual patient outcomes, coupled
with amoderate overall effectiveness of responsive stimulation us-
ing pulse trains, suggests there is room for improvement. Better
efficacy might be achieved by not only making the stimulation re-
sponsive, but by making the stimulus properties biomimetic such
that the signal emulates the waveforms, complexity and multi-
banded nature of biological neural electrical activity.

A study by Wyckhuys and colleagues compared two forms
of open-loop (non-responsive) stimulation: (1) conventional
periodic-pulse HFS, as used in clinical DBS, and (2) Poisson-
distributed pulse stimulation (PDS) with the same 130 Hz mean
stimulation frequency (Wyckhuys et al., 2010). PDS is biomimetic
in the sense that it emulates the observed distribution of
neuronal inter-spike intervals, which approximates a Poisson
point process (Shadlen & Newsome, 1998). Despite the non-
responsiveness of PDS, the efficacy of PDS in seizure suppression
was significantly improved over that of periodic HFS. In periodic
HFS-improved rats, a 50% decrease in seizure occurrence was
observed, whereas in PDS-improved rats, seizure frequency
declined to 33% of the baseline rate. The only difference between
the two forms of stimulation was the complexity of the interval
timing of the pulses.

The advantage offered by PDS suggests that biocompatible
structuring of the stimulation in terms of signal complexity,
waveform and/or rhythmic constituents may be as relevant
to neuromodulation performance as the responsiveness of the
stimulation. To explore this concept, we constructed a cognitive
rhythm generator (CRG) model (Zalay & Bardakjian, 2009; Zalay,
Serletis, Carlen, & Bardakjian, 2010) comprising a therapeutic
network connected in a closed loop with a spontaneously-
seizing epileptiform network. The epileptiform network model
was utilized previously as a platform for testing artificial neural
network (ANN) based strategies for seizure control (Colic, Zalay,
& Bardakjian, 2011). Presently, we extend the application of
CRG networks to neuromodulator design, with the objective
of investigating neuromodulation utilizing dynamic, biomimetic
stimulation signals of non-trivial complexity and rhythmicity.
Coupled CRGs are suitable because they can produce outputs that
are comparable in waveform and dynamic complexity to activity
recorded from biological neural networks (Zalay & Bardakjian,
2008, 2009; Zalay et al., 2010). Furthermore, whereas ANN-based
neuromodulator design involves discrete input–output mapping
of the feedback and stimulus, a coupled oscillator approach
synthesizes rhythms intrinsically and dynamically, analogous to
way in which rhythms are generated by biological oscillatory
networks in the brain. In this paper, we evaluate the proposed
therapeutic CRG network for its ability to suppress seizure-
like events (SLEs) and restore dynamic complexity in the target
epileptiform network, and we compare its performance to
low-frequency and high-frequency periodic pulse stimulation
simulating standard clinical DBS.

2. Methods

2.1. Cognitive rhythm generator model

For the model presented in this paper, the nth cognitive
rhythm generator in the epileptiform or therapeutic network
consists of (1) an input bank of neuronal modes, whose mode

outputs are combined by mixing functions; (2) a ring device,
whose instantaneous amplitude and phase are modulated by the
mode outputs feeding it; and (3) a mapper, which constitutes the
output static nonlinearity of the CRG (Zalay & Bardakjian, 2009;
Zalay et al., 2010). The neuronal modes are filters that code for
different component input–output dynamics depending on the
mode shape and decay profile, and in their most general form are
obtained by eigen-decomposition of theVolterra kernels estimated
from measurements of the biological system response to input
noise (Kang, Zalay, Serletis, Carlen, & Bardakjian, 2012). The mode
outputs at time t are generated by convolution of the nth CRG
input, fn(t), with the kth mode, mkn(t):

ukn(t) = mkn(t) ∗ fn(t) =


∞

0
mkn(τ )fn(t − τ)dτ . (1)

For our modeling purposes, two modes are utilized, and are
selected to have the following analytical expressions:

m1n(t) = βnt exp(−βnt) (2a)

m2n(t) = βn(exp(−βnt) − m1n(t)) (2b)

where 1/βn is the modal time constant. The convolution operation
u1n(t) = m1n(t)∗fn(t) can be represented in equivalent differential
form by first taking the Laplace transform such that

U1n(s) = M1n(s)Fn(s)

=
βn

(s + βn)2
Fn(s)

=
βn

s2 + 2βns + β2
n
Fn(s). (3)

Rearranging (3) and making use of the Laplace transform identity
for derivatives, and letting u1n(0) = u̇1n(0) = 0, the following
equivalent second-order differential equation is obtained:

ü1n + 2βnu̇1n + βnu1n = βnfn (4)

which upon noting from (2a) and (2b) that m2n = ṁ1n, can be
converted to the following expressions:

u̇1n = u2n (5a)

u̇2n = βnfn − 2βnu2n − β2
nu1n. (5b)

The form of (5a) and (5b) enables the convolutions of input fn with
the twomodes given by (2a) and (2b) to be computed dynamically
from the system of first-order differential equations. The mode
outputs, u1n and u2n, which are the solutions of the equations,
dictate how the CRG responds dynamically to coupling inputs or
external stimuli through fn, which for a network of M CRG units
can be written as

fn =

M
m=1

cmnym + xn (6)

where ym is the output of the mth CRG, {cmn} are the associated
coupling coefficients, and xn is the external input. The mode func-
tions given by (2a) and (2b) have integrating and differentiating
character, respectively, in the sense that convolution of m1n with
a step input produces an accumulation effect due to its monopha-
sic exponential form, similar to capacitor charging. (This is not to
say the mode performs integration of the input in a mathemati-
cally rigorous sense of the definition.) Modem2n on the other hand
is biphasic and has differentiating character because convolution
of the mode with a step input generates a positive output on the
rising edge and negative output on the falling edge, and is every-
where else zero where the input is a constant (Kang et al., 2012;
Zalay & Bardakjian, 2009). In this way, the mode codes for rate of
change of the input, which is akin to taking the derivative.
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