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a b s t r a c t

The Universum, which is defined as the sample not belonging to either class of the classification problem
of interest, has been proved to be helpful in supervised learning. In this work, we designed a new
Twin Support Vector Machine with Universum (called U-TSVM), which can utilize Universum data to
improve the classification performance of TSVM. Unlike U-SVM, in U-TSVM, Universum data are located
in a nonparallel insensitive loss tube by using two Hinge Loss functions, which can exploit these prior
knowledge embedded in Universumdatamore flexible. Empirical experiments demonstrate thatU-TSVM
can directly improve the classification accuracy of standard TSVM that use the labeled data alone and is
superior to U-SVM in most cases.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Supervised learning problemwith Universum samples is a new
research subject in machine learning. The concept of Universum
sample was firstly introduced by Weston, Collobert, Sinz, Bottou,
and Vapnik (2006), owing its name to the intuition that the
Universum captures a general backdrop against which a problem
at hand is solved. It is defined as the sample not belonging to any
of the classes the learning task concerns. For instance, considering
the classification of ‘5’ against ‘8’ in handwritten digits recognition,
‘0’, ‘1’, ‘2’, ‘3’, ‘4’, ‘5’, ‘6’, ‘7’, ‘9’ can be considered as Universum
samples. Since it is not required to have the same distribution
with the training data, the Universum is able to show some prior
information for the possible classifiers. Several works have been
done using the Universum samples inmachine learning. InWeston
et al. (2006) the authors proposed a new Support Vector Machine
(SVM) framework, called U-SVM and their experimental results
show that U-SVM outperforms those SVMs without considering
Universum data. Sinz, Chapelle, Agarwal, and Schölkopf (2008)
gave an analysis of U-SVM. Then they presented a Least Squares
(LS) version of the U-SVM algorithm. Zhang, Wang, Wang, and
Zhang (2008) proposed a graph based semi-supervised algorithm,
which learns from the labeled data, unlabeled data and the
Universum data at the same time. Other literatures also can be
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found in Chen and Zhang (2009), Cherkassky, Dhar, and Dai (2011)
and Shen, Wang, Shen, and Wang (2011).

Recently, Jayadeva, Khemchandani, and Chandra (2007) pro-
posed a twin support vector machine (TSVM) classifier for binary
classification,motivated by GEPSVM1 (Mangasarian&Wild, 2006).
TSVMs generates two nonparallel planes such that each plane is
closer to one of two classes and is at least one distance from the
other. It is implemented by solving two smaller Quadratic Pro-
gramming Problems (QPPs) rather than a single large QPP, which
makes the learning speed of TSVM faster than that of a classical
SVM. Experimental results in Jayadeva et al. (2007) and Kumar and
Gopal (2008) show the TSVM outperforms both standard SVM and
GEPSVM in the most case. Some extensions to the TSVM can be
found in Khemchandani, Jayadeva, and Chandra (2009), Kumar and
Gopal (2008, 2009), Shao and Deng (2011), Shao, Zhang,Wang, and
Deng (2011) and Zhiquan Qi and Shi (2012, 2013).

Inspired by the success of TSVM, in this paper,wepropose a new
Twin Support Vector Machines with Universum (called U-TSVM).
The proposed U-TSVM has the following compelling properties.

♦ Except for labeled data from two classes, U-TSVM exploits
Universum data as well. All experiments in both Toy data, UCI
datasets and TFDSdatasets show that the classification accuracy
of U-TSVM is better than conventional TSVM algorithms that
do not use Universum data. In addition, to our knowledge, this

1 In this approach, data points of each class are proximal to one of two nonparallel
planes. Each plane is generated such that it is closest to one of the two data sets
and as far as possible from the other data set. Each of the two nonparallel proximal
planes is obtained by a single MATLAB command as the eigenvector corresponding
to a smallest eigenvalue of a generalized eigenvalue problem (Mangasarian &Wild,
2006).
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is the first TSVM implementation with Universum data. We
also show that the TSVM are the special cases of U-TSVM. This
provides an alternative explanation for the success of U-TSVM.

♦ The area of Universum data is defined by using two Hinge Loss
functions. The definition is more flexible than that of U-SVM,
which canmore fully exploit the information embedded in Uni-
versum data to construct the final classifier. Fig. 2 in Section 3
gave the intuitive geometric interpretations.

The remaining parts of the paper are organized as follows.
Section 2 briefly introduces the background of SVM and TSVM;
Section 3 describes the detail of U-TSVM; In the Section 4, we show
experiments of U-TSVM on various data sets. We conclude this
work in Section 5.

2. Background

2.1. Support Vector Classification (SVC) (Vapnik, 1995)

For classification about the training data

T = {(x1, y1), . . . , (xl, yl)} ∈ (ℜn
× Y)l, (1)

where xi ∈ ℜ
n, yi ∈ Y = {1,−1}, i = 1, . . . , l. Linear SVM is to

solve the following primal QPP

min
w,b,ξ

1
2
∥w∥

2
2 + C

l
i=1

ξi,

s.t. yi((w · xi)+ b) ≥ 1 − ξi, ξi ≥ 0, i = 1, 2, . . . , l,

(2)

where C is a penalty parameter and ξi are the slack variables. The
goal is to find an optimal separating hyperplane

(w · x)+ b = 0, (3)

where x ∈ ℜ
n. The Wolf Dual of (2) can be expressed as

max
α

l
j=1

αj −
1
2

l
i=1

l
j=1

yiyj(xi · xj)αiαj

s.t.
l

i=1

yiαi = 0, 0 ≤ αi ≤ C, i = 1, . . . , l,

(4)

where α ∈ ℜ
l are Lagrangian multipliers. The optimal separating

hyperplane of (3) can be given by

w =

l
i=1

α∗

i yixi, b =
1
Nsv


yj −

Nsv
i=1

α∗

i yi(xi · xj)


, (5)

where α∗ is the solution of the dual problem (4),Nsv represents the
number of support vectors satisfying 0 < α < C . A new sample is
classified as +1 or −1 according to the finally decision function
f (x) = sgn((w · x)+ b).

2.2. Twin Support Vector Machine (TSVM) (Jayadeva et al., 2007)

Consider a binary classification problemof l1 positive points and
l2 negative points (l1 + l2 = l). Suppose that data points belong to
positive class are denoted by A ∈ ℜ

l1×n, where each row Ai ∈ ℜ
n

represents a data point. Similarly, B ∈ ℜ
l2×n represents all of the

data points belong to negative class. For the linear case, the TSVM
(Jayadeva et al., 2007) determines two nonparallel hyperplanes:

f+(x) = (w+ · x)+ b+ = 0 and
f−(x) = (w− · x)+ b− = 0,

(6)

where w+, w− ∈ ℜ
n, b+, b− ∈ ℜ. Here, each hyperplane is closer

to one of the two classes and is at least one distance from the other.

A new data point is assigned to positive class or negative class
depending upon its proximity to the two nonparallel hyperplanes.
Formally, for finding the positive and negative hyperplanes, the
TSVM optimizes the following two respective QPPs:

min
w+,b+,ξ

1
2
∥Aw+ + e+b+∥

2
+ c1e⊤

−
ξ,

s.t. − (Bw+ + e−b+)+ ξ ≥ e−, ξ ≥ 0,
(7)

and

min
w−,b−,η

1
2
∥Bw− + e−b−∥

2
+ c2e⊤

+
η,

s.t. (Aw− + e+b−)+ η ≥ e+, η ≥ 0,
(8)

where c1, c2 ≥ 0 are the pre-specified penalty factors, e+, e−

are vectors of ones of appropriate dimensions. By introducing the
Lagrangian multipliers, the Wolfe dual of QPPs (7) and (8) can be
represented as follows:

max
α

e⊤

−
α −

1
2
α⊤G(H⊤H)−1G⊤α

s.t. 0 ≤ α ≤ c1e−,

(9)

and

max
β

e⊤

+
β −

1
2
β⊤P(Q⊤Q )−1P⊤β

s.t. 0 ≤ β ≤ c2e+,

(10)

where G = [B e−],H = [A e+], P = [A e+] and Q = [B e−],
α ∈ ℜ

m2 , β ∈ ℜ
m1 are Lagrangian multipliers.

The non-parallel hyperplanes (6) can be obtained from the
solutions α and β of (9) and (10) by

v1 = −(H⊤H)−1G⊤α, where v1 = [w⊤

+
b+]

⊤,

v2 = −(Q⊤Q )−1P⊤β, where v1 = [w⊤

−
b−]

⊤.
(11)

For the nonlinear case, we can refer to Jayadeva et al. (2007).

3. Universum-Twin Support Vector Machine (linear U-TSVM)

3.1. Linear case

We firstly give the formal representation of classification prob-
lem with Universum. Suppose that the training set T̃ consists of
two parts:

T̃ = T


U, (12)

where the symbol


means the union of sets;

T = {(x1, y1), . . . , (xl, yl)} ∈ (ℜn
× Y)l,

U = {x∗

1, . . . , x
∗

u} ∈ ℜ
n,

(13)

with xi ∈ ℜ
n, y ∈ Y = {−1, 1}, i = 1, . . . , l and x∗

j ∈ ℜ
n, j = 1,

. . . , u. The goal is to induce a real-valued function

y = sgn(g(x)), (14)

to infer the label y corresponding to any sample x in ℜ
n space.

U-SVM uses the ε-insensitive loss for Universum:

1
2
∥w∥

2
2 + c

l
i=1

ϕε[yifw,b(xi)] + d
u

j=1

ρ[fw,b(x∗

j )], (15)

where ϕε[t] = max{0, ε − t} is the hinge loss function, prior
knowledge embedded in the Universum

ρ[t] = ρ−ε[t] + ρ−ε[−t] (16)
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