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a b s t r a c t

Unified algorithms for principal and minor components analysis can be used to extract principal
components and if altered simply by the sign, it can also serve as aminor component extractor. Obviously,
the convergence of these algorithms is an essential issue in practical applications. This paper studies the
convergence of a unified PCA and MCA algorithm via a corresponding deterministic discrete-time (DDT)
system and some sufficient conditions to guarantee convergence are obtained. Simulations are carried
out to further illustrate the theoretical results achieved.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Principal component analysis (PCA) and minor component
analysis (MCA) provide powerful techniques in many information
processing fields. For example, PCA is a useful tool in feature
extraction, data compression, pattern recognition, time series
prediction, etc. (Lv, Zhang & Tan, 2006), and MCA has been applied
in frequency estimation, bearing estimation, digit beamforming,
moving target indication, clutter cancellation, total least squares,
computer vision, etc (Cirrincione, Cirrincione, Herault, & Huffel,
2002). Neural networks can be used to solve the task of
PCA and MCA, which possess many obvious advantages, such
as lower computational complexity and better suitability for
high-dimensional and nonstationary data, compared with the
traditional algebraic approaches. In the last few decades, many
neural network learning algorithms were proposed to extract
principal components (Bannour & Azimi-Sadjadi, 1995; Cichocki,
Kasprzak, & Skarbek, 1996; Kung, Diamantaras, & Taur, 1994;
Möller & Könies, 2004; Oja, 1982; Ouyang, Bao, & Liao, 2000;
Sanger, 1989; Xu, 1993; Yu, Efeand, & Kaynak, 2002; Yu, Poznyak,
& Li, 2001) or minor components (Cirrincione et al., 2002; Douglas,
Kung, & Amari, 2002; Feng, Bao, & Jiao, 1998; Feng, Zheng, &
Jia, 2005; Kong, Hu, & Han, 2010b; Luo & Unbehauen, 1997;
Möller, 2004; Oja, 1992; Ouyang, Bao, Liao, & Ching, 2001; Xu,
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Oja, & Suen, 1992; Zhang & Leung, 2000), respectively. Clearly, a
unified neural network algorithm, capable of both PCA and MCA
by simply switching the sign in the same learning rule, is of
practical significance in the implementations of algorithms, which
can reduce the complexity and cost of hardware implementations
(Chen & Amari, 2001; Hasan, 2007). In this research area, many
pioneering works have been proposed by Chen and Amari (2001).
Recently, a few self-normalizing dual systems for minor and
principal component extraction are proposed and their stability is
widely analyzed (Hasan, 2007; Kong, Hu, &Han, 2012; Peng, Zhang,
& Xiang, 2009).

The convergence of neural network learning algorithms is a dif-
ficult topic for direct study and analysis. Traditionally, based on
the stochastic approximation theorem, the convergence of these
neural network learning algorithms is interpreted indirectly by
analyzing corresponding deterministic continuous time (DCT) sys-
tems (Kushner & Clark, 1976; Ljung, 1977). The stochastic approxi-
mation theorem requires that some restrictive conditions must be
satisfied. One important condition is that the learning rates of al-
gorithms must approach zero. Clearly, the restrictive condition is
difficult to satisfy in many practical applications, where a constant
learning rate is usually employed due to computational roundoff
limitations and tracking requirements (Zufiria, 2002). Recently, de-
terministic discrete time (DDT) systems have been proposed in-
stead to indirectly interpret the dynamics of the neural network
learning algorithms described by stochastic discrete time (SDT)
systems (Zufiria, 2002), andmanyMCA or PCA algorithms are ana-
lyzed via the DDTmethod (Kong, Hu, & Han, 2010a; Lv et al., 2006;
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Mao, Fan, & Li, 2006; Peng, Zhang & Xiang, 2008; Zhang, 2003;
Zhang, Mao, Lv, & Tan, 2005; Zufiria, 2002). It is worth noting that
DDT systems allow learning rates to be constant and can preserve
the discrete time nature of the original SDT systems.

Despite the large number of unified PCA and MCA algorithms
proposed to date, there are few papers that analyze these
algorithms via DDT methods and derive the conditions to
guarantee convergence. Obviously, it is necessary to perform such
research for these algorithms from the point of application. Among
the algorithms of the unified PCA and MCA, Chen’s algorithm
(Chen & Amari, 2001) is regarded as pioneering work. Other
self-normalizing dual systems (Hasan, 2007) or dual purpose
algorithms (Kong et al., 2012; Peng et al., 2009) can be viewed as
the generalizations of the unified Chen algorithm (Chen & Amari,
2001). Chen’s algorithm lays sound theoretical foundations for the
dual purpose algorithm research. However, nowork has been done
so far on the study of Chen’s DDT system. In this paper, the unified
PCA and MCA algorithm proposed by Chen and Amari (2001) is
analyzed and the sufficient conditions to guarantee convergence
are derived by the DDT method, and these theoretical results can
lay a solid foundation for the application of this algorithm.

This paper is organized as follows. In Section 2, a unified
algorithm for PCA and MCA is presented. In Section 3, the
convergence analysis of the unified algorithm for PCA andMCA via
the DDTmethod is given. In Section 4, computer simulation results
on extracting the principal component and minor component are
presented. Finally, we give some conclusions in Section 5.

2. Unified self-stabilizing algorithm for PCA and MCA

Consider a single linear neuronwith the following input–output
relation: y(k) = W T (k)X(k), k = 0, 1, 2, . . ., where y(k) is
the neuron output, the input sequence {X(k)|X(k) ∈ Rn(k =

0, 1, 2, . . .)} is a zero mean stationary stochastic process, and
W (k) ∈ Rn(k = 0, 1, 2, . . .) is the weight vector of the
neuron. In the last few decades, many neural network learning
algorithms (Bannour & Azimi-Sadjadi, 1995; Cichocki et al., 1996;
Kung et al., 1994; Möller & Könies, 2004; Oja, 1982) have
been proposed to update the weight vector W (k), such that as
k → ∞,W (k) can converge to principal components or minor
components, respectively. Chen and Amari (2001) proposed a
unified stabilizing learning algorithm for principal components
andminor components extraction, and the stochastic discrete form
of the algorithm can be written as

W (k + 1) = W (k) ± η[∥W (k)∥2y(k)X(k) − y2(k)W (k)]

+ η(1 − ∥W (k)∥2)W (k), (1)

where η(0 < η < 1) is the learning rate. The algorithm (1) can
extract principal components if ‘‘+’’ is used. If the sign is simply
altered, (1) can also serve as a minor component extractor. It is
interesting that the only difference between the PCA algorithm and
MCA algorithm is the sign on the right hand side of (1). This is of
practical significance in neural networks implementations.

In order to derive the sufficient conditions to guarantee
convergence of algorithm (1), next, we analyze the dynamics of
(1) via the DDT approach. The DDT system associated with (1)
can be formulated as follows. Taking the conditional expectation
E{W (k+ 1)/W (0),X(i), i < k} operator to (1) and identifying the
conditional expected value as the next iterate, a DDT system can
be obtained and given as

W (k + 1) = W (k) ± η

× [∥W (k)∥2RW (k) − W T (k)RW (k)W (k)]

+ η(1 − ∥W (k)∥2)W (k), (2)

where R = E[X(k)X T (k)] is the correlation matrix of input
data. The main purpose of this paper is to study the convergence
characteristics of the weight vector W (k) of (2) subject to the
learning rate η being some constant. It is worth mentioning that
Chen’s algorithm has a computational complexity 2Nr2 + 3Nr ,
compared with O(N3) of the inverse-power iteration algorithm
and O(Nr2) of the Rayleigh quotient iteration. We can see that the
computational complexity of Chen’s algorithm is of the same order
as that of the Rayleigh quotient iteration and is smaller than that of
the inverse-power iteration algorithm. The strong point of Chen’s
algorithm is that it is a unified neural networks algorithm, capable
of both PCA and MCA by simply switching the sign in the same
learning rule.

3. Convergence analysis

For convenience of analysis, some preliminaries are given.
Since R is a symmetric positive definite matrix, there exists an
orthonormal basis of Rn composed of the eigenvectors of R. Let
λ1, λ2, . . . , λn to be all the eigenvalues of R ordered by λ1 ≥ λ2 ≥

· · · ≥ λn−1 ≥ λn > 0. Denote by σ , the largest eigenvalue of
R. Suppose that the multiplicity of σ is m(1 ≤ m ≤ n), then
σ = λ1 = · · · = λm. Suppose that {Vi|i = 1, 2, . . . , n} is an
orthogonal basis of Rn such that each Vi is a unit eigenvector of R
associated with the eigenvalueλi. Denote by Vσ the eigensubspace
of the largest eigenvalueσ , i.e. Vσ = span{V1, . . . ,Vm}. Denoting
by V⊥

σ the subspace which is perpendicular to Vσ , clearly V⊥
σ =

span{Vm+1, . . . ,Vn}. Similarly, we can denote by Vτ eigensubspace
of the smallest eigenvalue τ . Suppose that the multiplicity of τ is
p(1 ≤ p ≤ n − m), then Vτ = span{Vn−p, . . . ,Vn} and V⊥

τ =

span{V1, . . . ,Vn−p−1}.
Since the vector set {V1,V2, . . . ,Vn} is an orthonormal basis

of Rn, for each k ≥ 0,W (k) and RW (k) can be represented
respectively as

W (k) =

n
i=1

zi(k)Vi, RW (k) =

n
i=1

λizi(k)Vi, (3)

where zi(k)(i = 1, 2, . . . , n) is some constant.
From (2) and (3), it holds that

zi(k + 1) = [1 ± η(λi∥W (k)∥2
− W T (k)RW (k))

+ η(1 − ∥W (k)∥2)]zi(k), (4)

(i = 1, 2, . . . , n), for all k ≥ 0. By denoting the function
Q (R,W (k)) = ±[λi∥W (k)∥2

− W T (k)RW (k)], (4) can be repre-
sented as

zi(k + 1) = [1 + ηQ (R,W (k)) + η(1 − ∥W (k)∥2)]zi(k), (5)

(i = 1, 2, . . . , n), for all k ≥ 0. According to the relevant prop-
erties of the Rayleigh Quotient (Cirrincione et al., 2002), it clearly
holds that

λnW T (k)W (k) ≤ W T (k)RW (k) ≤ λ1W T (k)W (k), (6)

for all k ≥ 0. From (6), it holds that

Qmax = (λ1 − λn)∥W (k)∥2, Qmin = (λn − λ1)∥W (k)∥2. (7)

Next, we analyze the convergence of DDT system (2) via the
following Theorems 1–4. Proofs of Theorems 1–4 are given in the
Appendix.

Theorem 1. Suppose that η ≤ 0.3, if ∥W (0)∥ ≤ 1 and (λ1 −λn) <
1, then it holds that ∥W (k)∥ < (1 + ηλ1), for all k ≥ 0.

Theorem 1 shows that there exists an upper bound of ∥W (k)∥
in the DDT system (2), for all k ≥ 0.
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