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a b s t r a c t

This paper is concerned with the global exponential estimating problem of delayed stochastic neural
networks with Markovian switching. By fully taking the inherent characteristic of such kinds of neural
networks into account, a novel stochastic Lyapunov functional is constructed in which as many as
possible of the positive definite matrices are dependent on the system mode and a triple-integral term
is introduced. Based on it, a delay- and mode-dependent criterion is derived under which not only the
neural network is mean square exponentially stable but also the decay rate is well obtained. Moreover,
it is shown that the established stability condition includes some existing ones as its special cases, and is
thus less conservative. This approach is then extended to twomore general cases wheremode-dependent
time-varying delays and parameter uncertainties are considered. Finally, three numerical examples are
presented to demonstrate the performance and effectiveness of the developed approach.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

During the past few years, various kinds of recurrent neural
networks have been proposed including bidirectional associa-
tive memory neural networks, cellular neural networks, Co-
hen–Grossberg neural networks andHopfield neural networks, etc.
Many exciting applications have been established in knowledge ac-
quisition, combinatorial optimization, adaptive control, signal pro-
cessing, prediction and other areas (Haykin, 1999). Generally, a
prerequisite to these successful applications is the stability of the
underlying neural networks. As a result, much effort has been de-
voted to the stability analysis of recurrent neural networks.

In electronic implementations of neural networks, time delays
are frequently inevitable in the process of information storage
and transmission. A main disadvantage of the presence of time
delays is to lead to instability and oscillation. On the other hand,
it has been recognized that better performance can be achieved
when time delays are intentionally introduced for some special
circumstances (Roska & Chua, 1992) (e.g., speed detection of
moving objects and processing of moving images). Consequently,
the study of recurrent neural networks with time delays has
gained a great deal of attention. Many interesting results related
to the stability analysis have been reported in the literature
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(Faydasicok & Arik, 2012; Li, Gao, & Yu, 2011; Liu, Chen, Cao, &
Lu, 2011; Marco, Grazzini, & Pancioni, 2011; Wu, Liu, Shi, He, &
Yokoyama, 2008; Zeng & Wang, 2006; Zhang & Han, 2009; Zhang,
Liu, Huang, & Wang, 2010; Zheng, Zhang, & Wang, 2011).

In real nervous systems, the synaptic transmission can be
regarded as a noisy process because of random fluctuations from
the release of neurotransmitters and other probabilistic causes.
As observed in Blythe, Mao, and Shah (2001) and Liao and Mao
(1996); Shen andWang (2007), a neural network can be stabilized
or destabilized by certain stochastic inputs. It motivates the study
of the stability analysis problemof stochastic neural networks (see,
for examples, Chen & Zheng, 2010, Wang, Liu, Li, & Liu, 2006, Yang,
Gao, & Shi, 2009, Zhang, Xu, Zong, & Zou, 2009 and the references
therein).

Furthermore, in practice, the phenomenonof information latch-
ing often appears in neural networks. Fortunately, it can be ef-
ficiently tackled by extracting a finite state representation from
the network (Tino, Cernansky, & Benuskova, 2004; Wu, Shi, Su,
& Chu, 2011). That is to say, the neural networks with informa-
tion latching may have finite modes which can switch from one
to another at different times. It has been known (Zhang & Wang,
2008; Zhu & Cao, 2011) that the Markov chain provides one of
the promisedways to characterize the switching between different
modes. Therefore, the study of delayed stochastic neural networks
withMarkovian switching is of great significance and practical im-
portance, and plays an essential role to the potential applications
in the field of information science. Recently, many methods (for
examples, the delay partitioning technique and the free-weighting
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matrices based method) have been adopted to deal with this issue
(Balasubramaniam & Lakshmanan, 2009; Huang, Ho, & Qu, 2007;
Liu, Ou, Hu, & Liu, 2010; Liu, Wang, Liang, & Liu, 2009; Liu, Wang, &
Liu, 2008; Lou&Cui, 2007;Ma, Xu, Zou, & Lu, 2011;Wang, Liu, Yu, &
Liu, 2006;Wu, Shi, Su, & Chu, 2012; Yang, Cao, & Lu, 2012; Zhang &
Wang, 2008; Zhu & Cao, 2010, 2011). InWang, Liu, Yu et al. (2006),
the authors discussed the exponential stability analysis problem of
recurrent neural networks with time delays and Markovian jump-
ing parameters. A delay-independent condition was obtained by
means of linear matrix inequalities (LMIs) (Boyd, El Ghaoui, Feron,
& Balakrishnan, 1994). At the same time, the authors in Huang
et al. (2007) studied the global robust stability of stochastic ad-
ditive neural networks with Markovian switching and interval
uncertainties. In Ma et al. (2011), a delay-dependent stability con-
dition was derived for uncertain stochastic neural networks with
Markovian jumping parameters and mixed mode-dependent de-
lays by introducing some slack matrices (or free-weighting matri-
ces). In Liu et al. (2010), the authors studied the stability analysis
problem of delayed bidirectional associative memory neural net-
workswithMarkovian jumping parameters by using the delay par-
titioning approach. However, it should be noted that, inmost of the
above results, only a part of the positive definite matrices (i.e., the
matrices involved in the quadratic form and the single-integral
terms of the constructed stochastic Lyapunov functionals) are de-
pendent on the system mode, while the matrices in the double-
integral terms are common for all modes. It is thus expected that
less conservative stability criteria could be established ifmore pos-
itive definite matrices are chosen to be mode-dependent. This is
because the choice of the positive definite matrices in the latter
case obviously has more freedom than that in the former case. In
addition, as suggested in Shu and Lam (2008), the transient process
of a neural network can be clearly characterized once its decay rate
is explicitly known. Therefore, the exponential stability analysis is
also of practical value. These motivate the present study.

In this paper, our attention focuses on the global exponential es-
timating problem of a class of delayed stochastic neural networks
withMarkovian switching. By fully considering its inherent charac-
teristic, a new stochastic Lyapunov functional is constructed with
as many as possible mode-dependent positive definite matrices
and an additional tripe-integral term. The role of this triple-integral
term is such that some positive definite matrices in the double-
integral terms, which are common in the above literature, depend
on the system mode. Then, a delay- and mode-dependent stabil-
ity condition is established in terms of LMIs. It should be pointed
out that the obtained LMIs are monotonically increasing with re-
spect to the decay rate. Therefore, the upper bound of the decay
rate can be efficiently found by solving a corresponding convex op-
timization problem, which is facilitated readily by some available
algorithms (e.g., the interior point algorithm) (Boyd et al., 1994).
It is further shown from a point of view of theory that the stabil-
ity criterion includes some previous ones as its special cases and is
thus less conservative. Themain contributions of this study are that
(i) a novel stability condition is derived; (ii) the upper bound of the
decay rate can be easily obtained; and (iii) the less conservatism of
our approach is rigorously proven. Moreover, this approach is then
extended to address the global exponential estimating problem
of stochastic neural networks with Markovian switching, mode-
dependent time-varying delays and parameter uncertainties. Fi-
nally, several examples are provided to illustrate the performance
and effectiveness of the developed approach.

Notation: The following notations will be used throughout this
paper. Let R denote the set of real numbers, R+ the set of non-
negative real numbers, Rn the n-dimensional Euclidean space and
Rn×m the set of all n × m real matrices. The superscript ‘‘T ’’
represents the transpose. I is the identity matrix with appropri-
ate dimension. The symbol ∗ denotes the symmetric block in a

symmetric matrix. For any real square matrices X and Y , X >

Y (X ≥ Y , X < Y , X ≤ Y ) means that X–Y is symmetric and
positive definite (positive semi-definite, negative definite, nega-
tive semi-definite, respectively), and X > 0 (X ≥ 0, X < 0, X
≤ 0) means that X is symmetric and positive definite (positive
semi-definite, negative definite, negative semi-definite, respec-
tively); Tr(X) is the trace of X; λmax(X) and λmin(X) are respec-
tively the maximum and minimum eigenvalues of X . For τ >

0, C ([−τ , 0]; Rn) denotes the family of continuous functions ϕ

from [−τ , 0] to Rn with the norm ∥ϕ∥ = sup−τ≤ϑ≤0 |ϕ(ϑ)|,
where | · | is the Euclidean norm in Rn. Let (Ω, F , P) be a com-
plete probability spacewith a filtration {Ft}t≥0 satisfying the usual
conditions (i.e. it is right continuous and F0 contains all P-pull
sets); C b

F0
([−τ , 0]; Rn) the family of all bounded, F0-measurable,

C ([−τ , 0]; Rn)-valued random variables; C 2,1(Rn
× R+

× S; R+)

the family of all nonnegative functions V (u, t, i) on Rn
× R+

× S
which are continuously twice differentiable in u and differentiable
in t . Themathematical expectation operatorwith respect to a given
probability measure P is denoted by E.

2. Problem formulation

Similar to (Huang et al., 2007; Wang, Liu, Yu et al., 2006; Zhu &
Cao, 2011), the delayed stochastic neural network with Markovian
switching considered in this paper is described by

du(t) = [−E(r(t))u(t) + A(r(t))f (u(t))
+ C(r(t))h(u(t − τ(t)))]dt
+ σ(u(t), u(t − τ(t)), t, r(t))dw(t) (1)

u(t) = ξ(t), t ∈ [−τ , 0], r(0) = r0, (2)

where u(t) = [u1(t), u2(t), . . . , un(t)]T is the state vector asso-
ciated with n neurons, w(t) is a m-dimensional Browian motion
on the complete probability space (Ω, F , P), {r(t)}t≥0, which is
supposed to be independent of w(t), is a right-continuous Markov
chain defined on the complete probability space (Ω, F , P) and
taking values in a finite state space S = {1, 2, . . . ,N} with transi-
tion probability matrix Q = (qij)N×N given by

P{r(t + ∆) = j|r(t) = i} =


qij∆ + o(∆), if i ≠ j
1 + qii∆ + o(∆), if i = j

with ∆ > 0 and lim∆→0+ o(∆)/∆ = 0. Here, qij ≥ 0 (i ≠ j) is the
transition rate from i to j, and

qii = −

N
j=1,j≠i

qij. (3)

E(r(t)) = diag(e1(r(t)), e2(r(t)), . . . , en(r(t))) is the firing rate
matrix with positive entries, A(r(t)) and C(r(t)) are respec-
tively the connection weight matrix and the delayed connection
weight matrix, f (u(t)) = [f1(u1(t)), f2(u2(t)), . . . , fn(un(t))]T and
h(u(t)) = [h1(u1(t)), h2(u2(t)), . . . , hn(un(t))]T are the activation
functions, the noise perturbation σ : Rn

×Rn
×R+

× S → Rn×m is
a Borel measurable function, τ(t) is a time-varying delay with an
upper bound τ > 0, ξ(t) ∈ C b

F0
([−τ , 0]; Rn) is an initial function

and r0 ∈ S is an initial mode.
For the sake of simplicity, for each r(t) = i ∈ S, we denote

E(r(t)) = Ei, A(r(t)) = Ai, C(r(t)) = Ci and σ(u(t), u(t −

τ(t)), t, r(t)) = σ(u(t), u(t − τ(t)), t, i) (or sometimes σ(t, i)).
As in Zhu and Cao (2011), the following assumptions are always
made:
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