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a b s t r a c t

Smartphone video capture and transmission to the Web contributes to data pollution. In contrast,
mammalian eyes sense all, capture only significant events, allowing us vividly recall the causalities.
Likewise in our videos, we wish to skip redundancies and keep only significantly differences, as
determined by real-time local medium filters. We construct a Picture Index (PI) of one’s (center of gravity
changes) among zeros (no changes) as Motion Organized Sparseness (MOS). Only non-overlapping time-
ordered PI pair is admitted in the outer-product AssociativeMemory (AM). Another outer product between
PI and its image builds Hetero-AM (HAM) for fault tolerant retrievals.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

We wish to describe a spatiotemporal information sampling
strategy for a small field of view handheld Smartphone. We begin
with a common sense approach about video frame rates: ‘‘How
many views or frames does a monkey need in order to tell a good
zookeeper from a bad one?’’ Monkeys select 3 distinctive views,
which we refer to as m frames: frontal, side and a 45° view (Giese
& Poggio, 2003). Interestingly, humans need only m = 2 views
when constructing a 3-D building from architectural blueprints,
or for visualizing a human head. These kind of questions, posed
byGiese and Poggio (2003), can be related to an importantmedical
imaging application. The Compressive Sensing (CS) strategy in
medical imaging may save the patient from un-wanted radiation
exposure with a smaller number of m views of even smaller
number of exposed pixels, which is counted as the lp-norm |

−→x |p ≡

(
N

n=1 |xn|p)
1
p , 0 ≤ p < 2, where p = 2 is Least Mean Squared

(LMS); p = 1 is Manhattan, or city-block, window-rim distance;
and p = 0 counts the non-zero elements

N
n=1 |

−→
X n|

0
= k

(anything non-zero raised to zero power is 1 mathematically). The
k-degree of sparseness is the sensing degree of freedom satisfying
k
N ≪ 1.

A million-dollar question remains in the medical imaging
technology: how to block the imaging radiation for m optimal
linear sparse combinations. We do not know a high precision
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technology for controlling the X-ray and Gallium contrast agents
(cf. Concluding Remarks). Instead, we address the Smartphone
data pollution challenge by exploiting an Artificial Neural Network
(ANN) andAssociativeMemory (AM) learning technology.Wewish
to capture significantlymeaningfulm frames to render a video Cliff
Note, without the usual post-processing time and labor costs.

We follow a mammalian vision, from Darwinian viewpoints,
paying attention to significant and abrupt changes formating, food,
and survival reasons. For example,when driving at night, wewatch
for pedestrians, in the rain not random raindrops. When the visual
stimuli received by both eyes agree at a moment in time, it is
certainly a signal; if disagree, it could be noise and rejected. Such
an experience of selective image fusion is effortless unsupervised
learning to separate signal from noise. Combining the power of
two eyes with the brain associative memory we can also solve
sophisticated image sources de-mixing problems (cf. Concluding
Remarks) (Szu & Kopriva, 2002).
Spotting Face App. Smartphone took 3 pictures of the same
person of variable poses {

−→x t , t = 1, 2, 3} and 2 pictures
of another person {

−→y t , t = 1, 2}, etc., created a private
FaceBook Web database: [A] = [

−→x 1,
−→x 2,

−→x 3,
−→y 1,

−→y 2, . . .].
After a phone call meeting a friend in a football stadium, one
may wish to turn on the spotting face app. The phone camera can
match any incoming picture

−→
Y with the Smartphone database

[A], which is mathematically equivalent to an over-determined
inverse, by fitting a highly redundant database [A] with a sparse

representation
−→
X of the incoming

−→
Y (identifying

−→
Y with known

facial poses [A] must be sparse
−→
X to be potentially unique).

−→
Y N = [A]N,m

−→
X m; =⇒

−→y m = [B]m,m
−→
X m; (1a)
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Use is made of a purely random sparse sensing matrix [φ]m,N in
Compressive Sensing

[B]m,m ≡ [φ]m,N [A]N,m; and −→y m ≡ [φ]m,N
−→
Y N . (1b)

The sparse sensing matrix will be replaced by a video motion
organized sparse sampling matrix [φs] in our video Compressive
Sampling.

Use is made of a purely random sparse sensing matrix [φ]m,N in
Compressive Sensing Single frame app. Given an image acquisition
rectangular matrix of m rows and N columns [A]m,N consisting of
few known ones (transparent ones for keeping the pixels) per row
among a dense sea of zeros (opaque zeros for rejecting pixels).
Statistically speaking, the ones of each row will not be overlapped
with the ones in the other rowwhich is sparse and thus orthogonal
in the statistical sense. Thus, the same linear algebra equation (1a)
can be interpreted differently in single frame app. The column
vector

−→
Y hasmmeasured summary values (similarly to Monkey’s

needm = 3 views andhumanm = 2 views) of the unknown image
vector

−→
X of N pixels. Given the input measurement vector

−→
Y

and known sparse orthogonal acquisition matrix [A]m,N , we must
determine the unknown image

−→
X ofN pixels. The question iswhat

to do when there are N − m missing conditions. In other words,
finding

−→
X from

−→
Y becomes an ill-posed inverse problem.

Solving the ill-posed inverse requires a performance measure,
e.g. LMS similarity min.|

−→
X −

−→
Y |

2 l2-norm, together with a
constraint at the minimum or sparse city-block distance: min.|

−→
X |

of the l1 norm, rather l0, for computational tractability reasons.
Without the constraint, the LMS is blind to all possible direction
cosines within the hyper-sphere surface, called Penrose’s pseudo-
inverse: right-multiplier [A]

−1 ∼= [A]
T ([A][A]

T )−1
; or left-

multiplier [A]
−1 ∼= ([A]

T
[A])−1

[A]
T . Indeed, using the sparseness

constraint, solving the l1-constrained l2-optimization becomes
a linear programming CS problem, as published by Emmanuel
Candes of Caltech, Justin Romberg of GIT Technology, and Fields
prize winner Terrence Tao of UCLA (Candes, Romberg, & Tao,
2006; Candes & Tao, 2006) as well as David Donoho of Stanford
who adopted the pre-processing of wavelet sub-band codec before
CS (Donoho, 2006). The Sparse Measurement Theorem stated that
the sampling operator [Φ] has the Restricted Isometry Property if
its matrix representation has k ones randomly distributed among
zeros is boundedwithin:∥[Φ]

−→
X ∥/∥

−→
X ∥ ∼= O(1∓δk);m ∼= 1.3k ≪

N . Instead of seeking a coarse inverse solution
−→
X located on the

hyper-sphere LMS surface, CRTD sought after a sharper solution
at a corner of the hypercube inscribed within the hyper-sphere
surface, by imposing the sparseness constraint as a min.l1-norm
(by the true sparseness constraint at min.l0-norm having N biaxial
2N combinatorial choices).

Now we introduce our paper. There is more than one way to
achieve the sparseness, a purely randomly way or an organized
way.We choose the latter to assign the informationmeaning to the
location of ones. These ones are selected sparsely by the significant
changes of local Center of Gravity among neighborhood frames,
and, otherwise, zeros. Furthermore, this sparse one among zeros
is taken as the Picture Index

−→
PI τ representing the full resolution

image
−→
X τ in the Massive Distributive Parallel (MDP) Hetero-

Associative Memory:

[HAM] =
−→
X τ

−→
PI

T
τ (2)

where the superscript T denotes a transpose of a column vector to
a row vector. The sampling rate can be adaptively decided by the
C.G. changes of local scenery movement, from 1

△t = 30Hz toward

a few Hz or less, until the next
−→
PI τ+△tτ is found and satisfied the

orthogonality condition.

⟨
−→
PI

T
τ

−→
PI τ ′⟩ = δτ ,τ ′ (3)

where the information flow τ ′
= t+△tt; t = τ , help selected and

kept 2 frames form several by-passed frames. Thereby, we record
this fact in the jump-over sequential storage index Associative
Memory

[AM] =
−→
PI τ+△tτ

−→
PI

T

τ . (4)

Since the input of a Picture Index to the index associative memory
[AM] can reproduce the next new picture index in a Fault Tolerant
fashion, as the originally stored time-order.

σo([AM]
−→
PI τ ) =

−→
PI τ+△tτ , (5)

where the well-known McCulloch–Pitts neuronal sigmoid logic is
the neuronal two-state normalization (firing or not) that has the
Boltzmann canonical ensemble form in terms of the Boltzmann
constant KB and brain Kelvin local temperature T :

y = σT (x − θ) =

exp


x−θ
2KBT



exp


x−θ
2KBT


+ exp


−

x−θ
2KBT


=

1
1 + exp


−

x−θ
KBT

 .
In a cool down local limit, KBT =⇒ 0, the sigmoid logic is reducible
to Von Neumann binary logic: 1= σ o(x − θ) = 0, that could be
more zeros than ones as the sparse representation. Moreover, a
sequentially updated Hetero-AM storage is defined

[HAM] = [HAM] +
−→
X τ+△tτ

−→
PI

T

τ+△tτ . (6)

[HAM] can be used to recover a high resolution
−→
X τ+△tτ image at

some equilibrium temperature T

−→
X τ+△tτ = σT ([HAM]

−→
PI τ+△tτ ). (7)

This strategy emulates the Hippocampus AM storage in the
center of the brain. The AM and sigmoid logic is familiar
to the neural network community, but its relationship to the
current Compressive Sensing has not been elucidated before. In
this adaptive or learning aspect, our approach has generalized
the statistically purely random sparse pseudo-orthogonality. Our
orthogonality is deterministically achieved by non-overlapping
ones over zeros.

In Section 2, we will review the AM storage in terms of
sparse matrix algebra of outer-product ‘write’ operations and
the inner-product ‘read’ operations. The Picture Index (PI) is
automatically produced by a video frame generated Motion
Organized Sparseness (MOS) which is crucial for achieving non-
overlapping orthogonality, and therefore the fault tolerance (FT )
and generalization. Our approach is intended to be frame-selective
and information-compressive sampling. We wish to eventually
produce an automated ‘Cliff Notes’ (not shown), which would
merge all distinctive frames into a single (large) frame story line to
aid human analysts, who otherwise have to manually sift through
terabytes of data.
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