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a b s t r a c t

This paper describes a computational model of use-dependent recovery of movement strength following
a stroke. Themodel frames the problem of strength recovery as that of learning appropriate activations of
residual corticospinal neurons to their target motoneuronal pools. For example, for an agonist/antagonist
muscle pair, we assume themotor systemmust learn to activate preserved agonist-exciting corticospinal
neurons and deactivate preserved antagonist-exciting corticospinal neurons. The model incorporates a
biologically plausible reinforcement learning algorithm for adjusting cell activation patterns – stochastic
search – using generated limb force as the teaching signal to adjust the synaptic weights that determine
cell activations. Themodelmakes predictions consistent with clinical and brain imaging data, such as that
patients can achieve an increase in strength after appearing to reach a recovery plateau (i.e., ‘‘residual
capacity’’), that the differential effect of a dose of movement practice will be greater earlier in recovery,
and that force-related brain activation will increase in secondary motor areas following a stroke. An
interesting prediction that could be explored clinically is that temporarily inhibiting subpopulations of
more powerfully connected corticospinal neurons during late movement training will allow the motor
system to optimize corticospinal neurons with a weaker influence, whose optimization was blocked by
the rapid optimization of more strongly connected neurons early in training.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Over 700,000 people experience a stroke in the US each year
(Broderick et al., 1998). About 80% of acute stroke survivors
experience hemiparesis, with this percentage decreasing to about
50% in chronic stroke (Gresham, Duncan, & Stason, 1995).
Stroke patients typically undergo several months of rehabilitative
movement training aimed at improving strength and coordination,
but the neural mechanisms that promote motor recovery in
response to movement practice are not well understood. There
are currently intensive efforts to develop new stroke rehabilitation
techniques (Langhorne, Coupar, & Pollock, 2009), including robotic
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and virtual reality approaches (Brochard, Robertson, Médée, &
Rémy-Néris, 2010), but there is a lack of rigorous, theoretical
frameworks to guide these efforts.

Developing mathematical models of stroke recovery could
improve the understanding of stroke motor recovery and help
guide the design of new therapies. Currently, however, only a
few previous studies have used a computational approach to
model motor function following stroke. The focus of these studies
has primarily been on explaining changes in receptive fields or
cortical maps following stroke (Goodall, Reggia, Chen, Ruppin, &
Whitney, 1997; Lytton, Stark, Yamasaki, & Sober, 1999; Sober,
Stark, Yamasaki, & Lytton, 1997) or on explaining kinematic
features of movement impairment such as decreased smoothness
and increased variability (Reinkensmeyer, Iobbi, Kahn, Kamper, &
Takahashi, 2003; Rohrer et al., 2002) rather than on the dynamics
of motor performance recovery. One recent exception is themodel
by Han, Arbib, and Schweighofer (2008), which modeled the
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phenomenon of ‘‘learned non-use’’, in which a stroke patient will
chose to not use their weakened limb because of difficulty in using
it effectively; this non-use is hypothesized to result in further
deterioration in the ability to control the limb. The Han et al. model
used a population vector coding paradigm with simulated lesions
to model directional errors in a center-out reaching task, and an
action-choice module that learned by reinforcement learning the
value of using each arm for reaching in different directions. They
found that if motor training brought directional reaching errors
below a threshold, then spontaneous use of the arm continued to
train the arm, and they were able to model cortical reorganization
as a redistribution of population vector directions due to the
training. The model was supported by self-reports of functional
activity from a large multi-site randomized controlled trial of
constraint-induced therapy (Schweighofer, Han, Wolf, Arbib, &
Winstein, 2009).

The Han et al. model focused on a cognitive issue—the choice
whether or not to use the impaired arm, relating directional errors
to functional use. The goal of the work described in this paper was
to develop a computational model of motor recovery following
stroke, and specifically, of the recovery of the ability to generate
force using disrupted corticospinal pathways. We focused on the
recovery of distal upper limb strength because strength strongly
predicts upper extremity functional activity (Bohannon, Warren,
& Cogman, 1991; Canning, Ada, Adams, & O’Dwyer, 2004; Harris
& Eng, 2007; Lang, Wagner, Edwards, & Dromerick, 2007), and
thus understanding its recovery might be expected to generalize
to a wide range of functions. In addition, it was possible to base a
model of force production on single cell neurophysiological studies
of wrist force production in primates (Fetz & Cheney, 1980; Kasser
& Cheney, 1985;Maier, Perlmutter, & Fetz, 1998;Mewes & Cheney,
1991; Perlmutter, Maier, & Fetz, 1998).

An initial goal in developing this model was to gain insight into
the phenomenon of ‘‘residual capacity’’ or ‘‘functional potential’’,
which refers to the finding that additional movement training can
improve motor function, including strength, even years following
a stroke (Page, Gater, & Bach-Y-Rita, 2004; Rijntjes, 2006; Stinear,
2007). Upper extremity motor recovery following a stroke reaches
an apparent plateau in the first year after the initial incident
by clinical (Duncan et al., 1994; Heller et al., 1987; Sunderland,
Tinson, Bradley, & Hewer, 1989) and biomechanical measures
(Mirbagheri, Tsao, & Rymer, 2008) (Fig. 1). However, there is
now extensive evidence that the time course of recovery is not
fixed, but rather that additional movement practice can enhance
movement and strength in both the sub-acute and chronic phases
following a stroke (Ada, Dorsch, & Canning, 2006; Barreca, Wolf,
Fasoli, & Bohannon, 2003; French et al., 2007; Kwakkel, Kollen,
& Krebs, 2008; Kwakkel et al., 2004; van der Lee et al., 2001)
(Fig. 1). The effect size of additional movement practice is typically
small (French et al., 2007; Kwakkel et al., 2004) leaving patients
short of a full recovery, but additional recovery is statistically
significant. Understanding the possible neural bases of residual
capacity should provide an insight into how to improve recovery.
We sought to gain an insight into these neural bases by modeling
the recovery of strength as a reinforcement learning problem in
which the limb force experienced on attempts to move the limb
guides the refinement of activation in preserved corticospinal
pathways. Portions of this work have been published in abstract
form (Reinkensmeyer et al., 2009).

2. Methods

2.1. Model description

The model presented here is intended to model strokes
that cause weakness by damaging motor areas that give rise

Fig. 1. Strength recovery and residual capacity following a stroke. The strength
recovery curves (thick solid lines), which were identified by measuring maximum
isometric elbow flexion torque from 20 stroke patients 5 times over a 12 month
period, and grouping more and less impaired patients into two groups using
a growth-mixture model technique (thick solid line = mean, dashed lines ±1
standard deviation (SD)). For reference, unimpaired age-matched maximum elbow
flexion strength is about 80 N m (Dewald & Beer, 2001). The superimposed thin,
solid lines show the hand-drawn, predicted effects of strength training in the acute
and chronic phase following a stroke based on a systematic review of 14 strength
training studies (Ada et al., 2006). In the Ada review, the average effect size for
strengthening acute weak patients was 0.33 SD, and for chronic patients 0.18 SD.
Source: The strength recovery curves (thick solid lines) are copied from Mirbagheri
et al. (2008).

to descending white matter tracts. The model ignores muscle
plasticity since it has been shown that electrical stimulation of
muscle can produce near normal limb forces after chronic stroke,
indicating that muscle atrophy is not the main cause of weakness
(Landau & Sahrmann, 2002). We apply the model to the task
of activating motor networks to generate a flexion force with
the wrist, a task commonly used in primate neurophysiological
studies. We propose that themotor systemmust learn appropriate
activation of residual corticospinal (CS) cells from movement
practice. Other potential mechanisms for recovery after a stroke
include structural changes in dendrites and dendritic trees,
activation of neural stem cells, and changes in the extracellular
matrix (Cramer, 2008), but we focus here on the following
question: ‘‘To what extent can the dynamics of stroke motor
recovery be explained by the process of optimizing activity in
residual, fixed pathways to motoneurons, based on experience
of movement practice?’’ The model is characterized by two key
features.

2.1.1. Model feature 1: summed activity from corticospinal cells
determines muscle force

The first key feature is that the force the wrist muscles generate
is determined by theweighted, summed activity of CS cells that ac-
tivate the wrist motoneurons (MNs) (Fig. 2). The influence of both
mono-synaptically connected systems (i.e. corticomotoneuronal
CM cells) and multi-synaptically connected systems are captured
by fixed, functional connectivity weights cfi and cei that represent
the net excitatory or inhibitory effect of the cell on theMNpool.We
modeled the distribution of these weights based on the primary
motor cortex CM system because it is likely the most function-
ally important of the premotor systems for humans, and has been
well characterized using spike-triggered averaging techniques in
primates (Fetz & Cheney, 1980; Kasser & Cheney, 1985). Most CM
cells (99%) originating from primary motor cortex facilitate either
the flexor or extensor muscle groups for wrist flexion/extension
movement; about a third or less of these cells at the same time in-
hibit the antagonist (see Fig. 17 in Perlmutter et al. (1998)). Chang-
ing the percentage of reciprocal or inhibitory connections did not
alter the basic findings from the model, except that when no in-
hibitory cells were included, the levels of simulated co-contraction
tended to be higher. Note that a basic feature of the model is
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