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a b s t r a c t

The paper discusses exponential stability of distributed delayed and impulsive cellular neural networks
with partially Lipschitz continuous activation functions. By relative nonlinear measure method, some
novel criteria are obtained for the uniqueness and exponential stability of the equilibrium point. Our
method abandons usual assumptions on global Lipschitz continuity, boundedness and monotonicity of
activation functions. Our results are generalization and improvement of some existing ones. Finally, two
examples and their simulations are presented to illustrate the correctness of our analysis.
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1. Introduction

Cellular neural networks (CNNs) initially introduced by Chua
and Yang (1988a, 1988b) have foundmany important applications
in the solving optimization problem, pattern recognition, biology
and image processing, especially in static image treatment
(Civalleri, Gilli, & Pandolfi, 1993). From a mathematical point of
view, a CNN can be characterized by an array of identical nonlinear
dynamical systems (called cells) that are locally interconnected as
in Gilli, Biey, and Checco (2004), which presented a set of sufficient
conditions ensuring the existence of at least one stable equilibrium
point in terms of the template elements.

In electronic implementation of neural networks, time delays
are inevitable due to axonal conduction times and finite switching
speeds of amplifiers (Chen & Zheng, 2010). Moreover, processing
of moving images requires the introduction of delays in the signals
transmitted among the cells (Roska & Chua, 1990). However, time
delays may destroy stability of the networks and even lead to
the oscillation behaviors. Consequently, it is required to study the
stability of CNNs with delays and there come forth many excellent
results on stability of CNNs with discrete delays (Chen & Zheng,
2010; Civalleri et al., 1993; Gilli, 1994; He, Wu, & She, 2006; Hu,
Gao, & Zheng, 2008; Liu & Cao, 2006; Park, 2006; Xiao & Zhang,
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2009; Xu, Lam, Ho, & Zou, 2005; Zeng & Wang, 2006; Zhang &
Gui, 2009; Zhang & Wang, 2007; Zhang, Wei, & Xu, 2005; Zhao
& Cao, 2005). Obviously, it is not reasonable that time delays are
assumed to be discrete because the time delays are continuously
distributed over a certain duration of time such that the distant
past has less influence compared to the recent behavior of the state.
The duration over which the past effects affect the current state
can extend over a finite or infinite interval (Mohamad, 2007). To
overcome the shortcoming, distributed delays proposed first by
Gopalsamy (1992) were introduced into the model of CNNs (Liao,
Wu, & Yu, 2002; Liu, You, & Cao, 2007; Ma, Yu, & Zhang, 2009;
Mohamad, 2007). Moreover, the abrupt changes in the voltages
produced by faulty circuit elements are exemplary of impulse
phenomenawhich can affect the transient behavior of the network
(Ahmada & Stamovab, 2008). A great deal of attention has been
devoted to stability analysis of different types of impulsive CNNs
with discrete delays (Li, Hua, & Fei, 2009; Stamova & Ilarionov,
2010; Xia, Cao, & Cheng, 2007; Xia, Huang, & Han, 2008; Yang, Cui,
& Long, 2009; Zhang, 2009) and with distributed delays (Ahmada
& Stamovab, 2008; Feng & Lam, 2011; Huang, Luo, & Yang, 2007;
Kaslik & Sivasundaram, 2011; Li & Yang, 2006; Li, Zhang, & Li, 2009;
Liu &Huang, 2006;Mohamad, Gopalsamy, & Akca, 2008; Ping & Lu,
2009; Wang et al., 2006; Yin & Li, 2009; Zhou, 2009).

According to foregoing analysis, it is more reasonable to
discuss the stability of CNNs with impulse and distributed delays.
Among the existing research results, some activation functions are
assumed to be globally Lipschitz continuous (Li & Yang, 2006; Li,
Zhang et al., 2009; Liu & Huang, 2006; Mohamad et al., 2008;
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Ping & Lu, 2009; Wang et al., 2006; Zhou, 2009), bounded and
monotonic (Huang et al., 2007) and bounded (Ahmada& Stamovab,
2008; Kaslik & Sivasundaram, 2011; Yin & Li, 2009). Unfortunately,
these assumptions make these existing results unapplicable to
some important engineering problems. For example, when the
neural networks are used to solve optimization problems with
the presence of constraints (linear, quadratic, or more general
programming problems), unbounded (or nonmonotonic, non-
globally Lipschitz continuous) activations modeled by diode-like
exponential-type functions are needed such that constraints are
satisfied (Forti & Tesi, 1995). Motivated by this, we attempt to
abandon these assumptions and only require activation functions
to be partially Lipschitz continuous. Moreover, the relative
nonlinear measure is more efficient than the nonlinear measure
for exponential stability analysis of Hopfield-type neural networks
without delayswhere the equilibrium points are given (Qiao, Peng,
& Xu, 2001). Consequently, the paper is devoted to studying the
exponential stability of distributed delays and impulsive CNNs
with continuous Lipschitz continuous activation functions by
relative nonlinear measure.

The remainder of this paper is arranged as follows. In Section 2,
the original state equation of CNNs is reformed as a nonlinear
differential system with distributed delays. In Section 3, being
preliminaries, a nonlinear impulsive functional differential system
with distributed delays is discussed and sufficient conditions are
presented for exponential stability of equilibrium point of the
system. In Section 4, some sufficient conditions are provided for
exponential stability of equilibrium point of different types of
CNNs by means of results derived in Section 3. Moreover, two
examples and their simulations are presented to illustrate that our
method is valid and that our derived results are new and correct.
Conclusions are given in Section 5.

2. Problem reformulation

The state equation for the cell C(i, j) of anM × N CNNs in Chua
and Yang (1988a, 1988b) is described by the following

Cx
dvxij(t)

dt
= −

1
Rx

vxij(t) +


C(k,l)∈Nr (i,j)

A(i, j; k, l)vykl(t)

+


C(k,l)∈Nr (i,j)

B(i, j; k, l)vukl + Iij,

1 ≤ i ≤ M, 1 ≤ j ≤ N, (1)

where vxij, vuij and vyij denote the state voltage, input voltage and
output voltage of a cell respectively; A(i, j; k, l) and B(i, j; k, l) are
the linear feedback and control operators, respectively; Iij is an
independent bias current source; Nr(i, j) = {C(k, l) | max{|k −

i|, |l − j|} ≤ r, 1 ≤ k ≤ M; 1 ≤ l ≤ N} (r is a positive
integer number); The output is defined by vyij = f (vxij) where
f (x) = 0.5(|x + 1| − |x − 1|).

After having ordered the cells in some way (e.g., by columns or
rows), the state equation of CNNs (1) composed ofM ×N cells can
be reformed in Civalleri et al. (1993) as the following vector form

ẋ = −x + Âx + B̂u + I, (2)

where x, ẋ ∈ RM×N denote state vector and its derivative, respec-
tively; y ∈ RM×N is output vector depending on x through the sat-
uration function defined in Chua and Yang (1988a); u ∈ RM×N is
input vector; I ∈ RM×N is the bias current vector; Both the linear
cell resistance Rx and capacitance Cx in (1) are assumed to be 1;
Â, B̂ ∈ RM×N,M×N depend on the established order among the cells
and on the cloning templates.

To discuss effect of delays on the CNNs, the paper Civalleri et al.
(1993) further investigated the modified state equation with the
following vector form:

ẋ(t) = −x(t) + Ay(t) + Aτy(t − τ) + Bu(t) + I

= −x(t) + Af (x(t)) + Aτ f (x(t − τ)) + Bu(t) + I, (3)

where

x(t) = {vxij(t)} i = 1, 2, . . . ,M; j = 1, 2, . . . ,N,

y(t) = {vykl(t)} k = 1, 2, . . . ,M; l = 1, 2, . . . ,N,

u(t) = {vukl(t)} k = 1, 2, . . . ,M; l = 1, 2, . . . ,N,

I = {Iij} i = 1, 2, . . . ,M; j = 1, 2, . . . ,N,

denotes the cell voltage, output/input node voltage and external
biasing current vectors, respectively; A, Aτ and B are the feedback
template, delayed template and control template, respectively.
Both the linear cell resistance Rx and capacitance Cx in (1) are
assumed to be 1; the time delay τ is assumed to be discrete values,
i.e., τ ∈ [0, ∞) and f is the activation function of the neuron
cells.

Owing to the fact that discrete delays cannot characterize the
delays caused by propagation on a multitude of parallel pathways
with a variety of axon sizes and lengths, the delayed output voltage
y(t − τ) = f (x(t − τ)) in (3) should be replaced by a more general
expression defined below t

−∞

K(t − s)f (x(s))ds or f
 t

−∞

K(t − s)(x(s)ds)


,

where K(t−s) = {Kij(t−s)}(i = 1, 2, . . . ,M; j = 1, 2, . . . ,N) is a
Kernel vector characterizing the refractoriness of the neuron cells
(Liao et al., 2002).

In this paper, we plan to discuss the model of an M × N CNNs
with distributed delays and impulses described by the following
differential equations

dxi(t)
dt

= −bixi(t) +

p
j=1

aijfj(vjxj(t))

+

p
j=1

aτ
ij

 t

−∞

Kij(t − s)gj(vτ
j xj(s))ds

+

p
j=1

Bijuj + Ii, t ≥ 0, t ≠ tk (4)

∆xi(tk) = Ii(xi(tk)), i = 1, 2, . . . , p, k ∈ N,

where p = M × N and i, j = 1, 2, . . . , p; bi =
1

RxCx
is a positive

constant and represents the rate with which the ith cell will reset
its potential to the resting state in isolation when disconnected
from the network and external inputs; vj and vτ

j denote the normal
and the delay amplifier gain of the jth cell, respectively; A =

(aij)p×p, Aτ
= (aτ

ij)p×p and B = (Bij)p×p are the feedback template,
delayed template and control template, respectively. ∆xi(tk) =

xi(t+k ) − xi(t−k ) is the impulse at moments tk and t1 < t2 < · · · is a
strictly increasing sequences such that limk→+∞ tk = +∞; f and
g are activation functions of the neuron cells. The initial condition
associated with the model (4) satisfies

ui = φi ∈ C((−∞, 0], R), i = 1, 2, . . . , p,

where C((−∞, 0], R) denotes the set of all bounded continuous
functions from (−∞, 0] to real number space R.

In order to investigate the stability of the model (4), we only
suppose that

(H1) Activation functions fj and gj are partially Lipschitz continu-
ous for j = 1, 2, . . . , p;
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