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a b s t r a c t

A deterministic annealing algorithm is proposed for approximating a solution of the linearly constrained
nonconvex quadratic minimization problem. The algorithm is derived from applications of a Hopfield-
type barrier function in dealing with box constraints and Lagrange multipliers in handling linear equality
constraints, and attempts to obtain a solution of good quality by generating a minimum point of a barrier
problem for a sequence of descending values of the barrier parameter. For any given value of the barrier
parameter, the algorithm searches for a minimum point of the barrier problem in a feasible descent
direction, which has a desired property that the box constraints are always satisfied automatically if the
step length is a number between zero and one. At each iteration, the feasible descent direction is found
by updating Lagrange multipliers with a globally convergent iterative procedure. For any given value of
the barrier parameter, the algorithm converges to a stationary point of the barrier problem. Preliminary
numerical results show that the algorithm seems effective and efficient.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The linearly constrained nonconvex quadratic minimization
problem is about minimizing a nonconvex quadratic function over
a polytope given by linear equality constraints and box constraints.
This problem is an NP-hard problem and has many diverse appli-
cations (Horst & Pardalos, 1995). It was shown in Pardalos and
Rosen (1987) that many integer and combinatorial optimization
problems can be formulated as linearly constrained nonconvex
quadratic minimization problems. For example, the max-bisection
problem in graph theory can be formulated as a linearly con-
strained nonconvex quadratic minimization problem, which will
be used as a testing problem. To compute a solution of the linearly
constrained nonconvex quadratic minimization problem, several
exact methods have been developed. They include the cutting-
plane method (Tuy, 1964), the extreme point ranking method
(Murty, 1968), the relaxation method (Falk & Hoffman, 1976),
and the branch and bound method (Falk & Soland, 1969). Due
to its computational complexity, the linearly constrained noncon-
vex quadratic minimization problem is difficult to solve to opti-
mality with an exact method. Heuristics as alternatives have been
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developed for computing a solution of good quality to this type of
problem. They include the simulated annealing procedure (Kirk-
patrick, Gelatti, & Vecchi, 1983), Tabu search (Glover, 1989), and
the interior-point method (Han, Pardalos, & Ye, 1992). An excel-
lent survey of methods for solving such a problem can be found in
Benson (1995), where the extensive developments of methods for
solving nonconvex minimization problems are discussed.

SinceHopfield and Tank (1985), combinatorial optimization has
become a popular topic in the literature of neural computation.
Many neural computational models for combinatorial optimiza-
tion have been developed in the literature. They include Aiyer,
Niranjan, and Fallside (1990), Dang and Xu (2002), Durbin and
Willshaw (1987), Gee, Aiyer, and Prager (1993), Gee and Prager
(1994), Peterson and Soderberg (1989), Rangarajan, Gold, and
Mjolsness (1996), Simic (1990), Urahama (1996), van den Bout
and Miller III (1990), Wacholder, Han, and Mann (1989), Waugh
and Westervelt (1993), Wolfe, Parry, and MacMillan (1994), Xu
(1994), and Yuille and Kosowsky (1994). A systematic inves-
tigation of such neural computational models for combinato-
rial optimization can be found in van der Berg (1996) and Ci-
chocki and Unbehaunen (1993). Most of these algorithms are
of deterministic annealing type, which is a heuristic continua-
tion method that attempts to find the global minimum of the
effective energy at high temperature and track it as the tem-
perature decreases. There is no guarantee that the minimum at
high temperature can always be tracked to the minimum at low

0893-6080/$ – see front matter© 2012 Elsevier Ltd. All rights reserved.
doi:10.1016/j.neunet.2012.12.002

http://dx.doi.org/10.1016/j.neunet.2012.12.002
http://www.elsevier.com/locate/neunet
http://www.elsevier.com/locate/neunet
mailto:mecdang@cityu.edu.hk
mailto:liangjianqingljy@sohu.com
mailto:yangyoung600@sina.com
http://dx.doi.org/10.1016/j.neunet.2012.12.002


2 C. Dang et al. / Neural Networks 39 (2013) 1–11

temperature, but the experimental results are encouraging (Yuille
& Kosowsky, 1994).

In this paper a deterministic annealing algorithm is proposed
for approximating a solution of the linearly constrained nonconvex
quadratic minimization problem. The algorithm is motivated
from an investigation that a continuous deformation from a
convex Hopfield-type barrier function to the nonconvex quadratic
function may lead to a global or near global optimal solution over
a box (Dang & Xu, 2000). The main idea of the algorithm is as
follows. A Hopfield-type barrier function is used as a barrier term
to incorporate box constraints into the objective function. The
resulting barrier function deforms from the convex Hopfield-type
barrier function to the objective function as the barrier parameter
decreases from one to zero. Lagrange multipliers are introduced
to deal with linear equality constraints. For any given value of the
barrier parameter, the algorithm searches for a minimum point
of a barrier problem in a feasible descent direction, which has
a desired property that the box constraints are always satisfied
automatically if the step length is a number between zero and
one. Preliminary numerical results show that the algorithm always
yields a global or near global optimal solution, provided that the
barrier parameter decreases at a slow pace.

The rest of this paper is organized as follows. We introduce the
barrier problemand derive some important properties in Section 2.
We describe the algorithm and prove its convergence in Section 3.
We present in Section 4 some preliminary numerical results to
show that the algorithm seems effective and efficient.We conclude
the paper with some remarks in Section 5.

2. Hopfield-type barrier function

The problem we consider in this paper is as follows. Find a
minimum point of

min f (x) =
1
2
x⊤Qx + c⊤x

subject to Ax = b,
sj ≤ xj ≤ tj, j = 1, 2, . . . , n,

(1)

where Q is a symmetric indefinite or negative semidefinite matrix,
c = (c1, c2, . . . , cn)⊤ is a vector of Rn, A is anm × nmatrix of full-
row rank given by

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

 ,

b = (b1, b2, . . . , bm)⊤ is a vector of Rm, and sj, j = 1, 2, . . . , n, and
tj, j = 1, 2, . . . , n, are finite constants satisfying that sj < tj, j =

1, 2, . . . , n. Let B = {x ∈ Rn
| si ≤ x ≤ ti, i = 1, 2, . . . , n}. Clearly,

B is bounded. For j = 1, 2, . . . , n, let aj denote the jth column of A.
Then, a⊤

j = (a1j, a2j, . . . , amj), j = 1, 2, . . . , n. Let P = {x ∈ B |

Ax = b}, which is the feasible region of (1). We assume throughout
this paper that P has an interior point, where an interior point of P
is a point x ∈ P with si < xi < ti, i = 1, 2, . . . , n.

In order to approximate a solution of (1), we introduce a
Hopfield-type barrier term,

hj(xj) = (xj − sj) ln(xj − sj) + (tj − xj) ln(tj − xj),

to incorporate sj ≤ xj ≤ tj into the objective function, and obtain

min e(x; β) = (1 − β)f (x) + β

n
j=1

hj(xj)

subject to Ax = b,
s < x < t,

(2)

where β ∈ [0, 1] is a barrier parameter. Instead of solving (1)
directly, let us consider a scheme, which obtains a solution of (1)
from the solution of (2) at the limit of β ↓ 0.

Let h(x) =
n

j=1 hj(xj). Then, e(x; β) = (1 − β)f (x) + βh(x).
We define hj(sj) = hj(tj) = (tj − sj) ln(tj − sj), j = 1, 2, . . . , n.
Since limxj→s+j

hj(xj) = limxj→t−j
hj(xj) = (tj − sj) ln(tj − sj), hence,

h(x) is continuous on B. Note that
∂h(x)
∂xj

= ln(xj − sj) − ln(tj − xj) = ln
xj − sj
tj − xj

.

Then,

lim
xj→s+j

∂h(x)
∂xj

→ −∞ and lim
xj→t−j

∂h(x)
∂xj

→ ∞.

From the compactness of P and the continuity of ∂ f (x)
∂xj

on P , one can

get that ∂ f (x)
∂xj

is bounded on P . Thus, from

∂e(x; β)

∂xj
= (1 − β)

∂ f (x)
∂xj

+ β
∂h(x)
∂xj

,

we obtain that, for any given β ∈ (0, 1],

lim
xj→s+j

∂e(x; β)

∂xj
→ −∞ and lim

xj→t−j

∂e(x; β)

∂xj
→ ∞.

Lemma 1. For any given β ∈ (0, 1], if x∗ is a minimum point of (2),
then x∗ is an interior point of P, i.e. Ax∗

= b and s < x∗ < t.

Proof. Let x0 be an interior point of P . Suppose that some compo-
nent of x∗, say x∗

i , equals si or ti. For any given number ϵ ∈ (0, 1],
let y∗

= x∗
+ ϵ(x0 − x∗). Then, Ay∗

= b and s < y∗ < t . For any
given number δ ∈ (0, 1] satisfying ϵ + δ ≤ 1, let

z∗
= y∗

+ δ(x0 − x∗) = x∗
+ (ϵ + δ)(x0 − x∗).

Then, z∗ is an interior point of P and can be made arbitrarily close
to x∗ through decreasing ϵ + δ. From the Taylor’s expansion, we
obtain that

e(z∗
; β) = e(y∗

; β) + δ(x0 − x∗)⊤∇xe(y∗
+ ηδ(x0 − x∗); β), (3)

where η ∈ [0, 1] and

∇xe(x; β) =


∂e(x; β)

∂x1
,
∂e(x; β)

∂x2
, . . . ,

∂e(x; β)

∂xn

⊤

.

Consider

(x0 − x∗)⊤∇xe(y∗
+ ηδ(x0 − x∗); β)

=

n
k=1

(x0k − x∗

k)
∂e(y∗

+ ηδ(x0 − x∗); β)

∂xk
.

Note that y∗
+ηδ(x0−x∗) = x∗

+(ϵ+ηδ)(x0−x∗). Let θ = ϵ+ηδ.
• If x∗

k = sk, then x0k − x∗

k > 0 and

lim
θ→0

∂e(y∗
+ ηδ(x0 − x∗); β)

∂xk

= lim
θ→0

(1 − β)
∂ f (y∗

+ ηδ(x0 − x∗))

∂xk

+ β ln
x∗

k + θ(x0k − x∗

k) − sk
tk − x∗

k − θ(x0k − x∗

k)

= lim
θ→0

(1 − β)
∂ f (y∗

+ ηδ(x0 − x∗))

∂xk

+ β ln
θ(x0k − x∗

k)

tk − sk − θ(x0k − x∗

k)

= −∞.
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