
Neural Networks 24 (2011) 1013–1021

Contents lists available at SciVerse ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

Neural networks letter

Dissipativity and quasi-synchronization for neural networks with discontinuous
activations and parameter mismatches
Xiaoyang Liu a,b,c, Tianping Chen c, Jinde Cao a,∗, Wenlian Lu c

a Department of Mathematics, Southeast University, Nanjing 210096, China
b School of Computer Science & Technology, Xuzhou Normal University, Xuzhou 221116, China
c Laboratory of Nonlinear Mathematics Science, Institute of Mathematics, Fudan University, Shanghai 200433, China

a r t i c l e i n f o

Article history:
Received 12 January 2011
Received in revised form 5 April 2011
Accepted 13 June 2011

Keywords:
Quasi-synchronization
Discontinuous activations
Filippov solutions
Matrix measure
Generalized Halanay inequalities

a b s t r a c t

In this paper, global dissipativity and quasi-synchronization issues are investigated for the delayed
neural networks with discontinuous activation functions. Under the framework of Filippov solutions,
the existence and dissipativity of solutions can be guaranteed by the matrix measure approach and the
new obtained generalized Halanay inequalities. Then, for the discontinuous master–response systems
with parameter mismatches, quasi-synchronization criteria are obtained by using feedback control.
Furthermore, when the proper approximate functions are selected, the complete synchronization can be
discussed as a special case that two systems are identical. Numerical simulations on the chaotic systems
are presented to demonstrate the effectiveness of the theoretical results.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Neural networks with discontinuous (or non-Lipschitz, or non-
smooth) neuron activations, have been found useful to address a
number of interesting engineering tasks, such as dry friction, im-
pacting machines, systems oscillating under the effect of an earth-
quake, power circuits, switching in electronic circuits and many
others, and therefore have received a great deal of attention in the
literature (Cortés, 2008; Danca, 2002; Forti & Nistri, 2003; Forti,
Nistri, & Papini, 2005; Liu & Cao, 2009; Lu & Chen, 2006, 2008). In
linear and nonlinear programming, the discontinuous neural net-
works (DNNs) are able to execute the circuit equilibrium points
coinciding with the constrained critical points of the objective
function (Chong, Hui, & Zak, 1999; Ferreira, Kaszkurewicz, & Bhaya,
2005; Forti & Tesi, 1995). The best property of such networks that
should be stressed is the global convergence in finite time, in com-
parison to smooth dynamical systems which can only converge as
time goes to infinity. Such a property seems especially important
in a global optimization problem since the minimum can be com-
puted in real time (Forti & Nistri, 2003; Wang & Xiao, 2010).

In the literature of analyzing DNNs, fundamental results have
been established on (robust) stability or convergence of the
equilibrium point or periodic solutions for delayed Hopfield DNNs
(Forti & Nistri, 2003; Forti et al., 2005; Liu & Cao, 2009) and
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Cohen–Grossberg DNNs (Lu & Chen, 2006, 2008). The stability
problem of an equilibrium point is indeed central to the analysis of
a dynamic system. Nevertheless, from a practical point of view, it is
not always the case that the orbits of the neural network approach
a single equilibriumpoint. It is possible that there is no equilibrium
point in some situations. Therefore, the concept on dissipativity
was introduced (Cao, Yuan, Ho, & Lam, 2006; Hale, 1989; Liao &
Wang, 2003; Song & Cao, 2008) and has applications in the areas
such as stability theory, chaos and synchronization theory, system
norm estimation, and robust control (Liao & Wang, 2003). In this
paper, we continue to consider the global dissipativity problem
of neural networks, but the activations are not assumed to be
continuous.

Synchronization, that means two or more systems share a
common dynamical behavior, which can be induced by coupling or
by external forcing, is a basis to understand an unknowndynamical
system from one or more well-known dynamical systems. From
Pecora and Carroll (1990), chaotic synchronization has become a
hot topic in nonlinear dynamics due to theoretical significance and
potential applications. So far, many types of synchronization have
been presented, such as identical or complete synchronization,
generalized synchronization, phase synchronization, anticipated
and lag synchronization (Liang, Wang, Liu, & Liu, 2008; Luo,
2009). Recently, the quasi-synchronization issue has received
a great deal of attention in the literature mainly due to the
unavoidability of parameter mismatches between two systems
in practical synchronization implementations (Astakhov, Hasler,
Kapitaniak, Shabunin, & Anishchenko, 1998; Huang, Li, Yu, &
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Chen, 2009; Jalnine & Kim, 2002; Masoller, 2001; Shahverdiev,
Sivaprakasam, & Shore, 2002). Generally, mismatched parameters
always implies that the synchronization error could not approach
zero with time, but fluctuates. However, it is important to know
the region of the synchronization error and control it within
a small region around zero, i.e., quasi-synchronization. So, in
this paper, the quasi-synchronization of master–response systems
with mismatched parameters is investigated.

For these purposed, matrix measure is introduced to deal with
matrix inequalities, which can be positive or negative, in com-
parison to the matrix norm which should always be nonnegative.
Owing to these special properties of matrix measure, the results
obtained via this approach are usually less restrictive than those
via matrix norm (He & Cao, 2009; Vidyasagar, 1993). Another ad-
vantage of this approach is avoiding constructing Lyapunov func-
tion in the proof. The main contribution of this paper includes
three aspects. First, for the differential equations with discontin-
uous right-hand sides, the concept of Filippov solution (Filippov,
1988) is introduced and the existence of solution is proved for the
DNNs. Second, the global dissipativity of Filippov solution is con-
sidered by using the matrix measure approach and the general-
ized Halanay inequalities (Halanay, 1996;Wen, Yu, &Wang, 2008).
Third, for the two DNNs with parameter mismatches, the quasi-
synchronization issue is discussed also by the matrix measure ap-
proach. Furthermore, the complete synchronization between two
coupled identical systems can be studied as a special case of the
quasi-synchronization.

The rest of the paper is organized as follows. In Section 2,
some preliminaries are given. In Section 3, the existence of
Filippov solutions of the DNNs is considered and the global
dissipativity conditions is obtained bymatrixmeasure approach. In
Section 4, the quasi-synchronization of master–response systems
with discontinuous activations and parameter mismatches is
discussed by the matrix measure method. In Section 5, simulation
results aiming at substantiating the theoretical analysis are
presented. This paper is concluded in Section 6.

2. Model formulation and preliminaries

In this paper, we consider the following neural networks de-
scribed by the following differential equations

ẋ(t) = −D(t)x(t)+ A(t)f (x(t))+ B(t)f (x(t − τ(t)))+ J(t), (1)

where x(t) = (x1(t), x2(t), . . . , xn(t))T ∈ Rn is the state vector as-
sociated with the neurons; D(t) = diag(d1(t), d2(t), . . . , dn(t))
is an n × n diagonal matrix with di(t) > 0, i = 1, 2, . . . , n;
A(t) = (aij(t))n×n and B(t) = (bij(t))n×n are the time-varying con-
nection weight matrix and the delayed connection weight matrix,
respectively; f (x) = (f1(x1), f2(x2), . . . , fn(xn))T : Rn

→ Rn is a
diagonal mapping where fi, i = 1, 2, . . . , n, represents the neu-
ron input–output activation; τ(t) is the time-varying delay with
τ(t) ≤ τ , and J(t) is the external input vector.

Definition 1. Class F of functions: we call f (x) ∈ F , if for all
i = 1, 2, . . . , n, fi(·) satisfies: fi(·) is continuously differentiable,
except on a countable set of isolated points {ρ i

k}, where the right
and left limits f +

i (ρ
i
k) and f −

i (ρ
i
k) exist.

In the following, we apply the framework of Filippov in dis-
cussing the solution of delayed neural networks (1).

Definition 2 (Forti &Nistri, 2003). Suppose E ⊂ Rn. Then x → F(x)
is called as a set-valued map from E ↩→ Rn, if for each point x
of a set E ⊂ Rn, there corresponds a nonempty set F(x) ⊂ Rn.

A set-valuedmap F with nonempty values is said to be upper-semi-
continuous at x0 ∈ E if, for any open set N containing F(x0), there
exists a neighborhood M of x0 such that F(M) ⊂ N . F(x) is said to
have a closed (convex, compact) image if for each x ∈ E, F(x) is
closed (convex, compact).

Nowwe introduce the concept of Filippov solution. Consider the
following system

dx
dt

= f (x), (2)

where f (·) is not continuous.

Definition 3 (Filippov, 1988). A set-valued map is defined as

F(x) =


δ>0


µ(N)=0

K [f (B(x, δ) \ N)], (3)

where K(E) is the closure of the convex hull of set E, B(x, δ) = {y :

‖y − x‖ ≤ δ}, and µ(N) is Lebesgue measure of set N . A solution
in the sense of Filippov (Filippov, 1988) of the Cauchy problem for
Eq. (2) with initial condition x(0) = x0 is an absolutely continuous
function x(t), t ∈ [0, T ], which satisfies x(0) = x0 and differential
inclusion:

dx
dt

∈ F(x), a.e. t ∈ [0, T ]. (4)

Now we denote

F(x) △
= K [f (x)] = (K [f1(x1)], . . . , K [fn(xn)]),

where K [fi(xi)] = [min{fi(x−

i ), fi(x
+

i )},max{fi(x−

i ), fi(x
+

i )}], i =

1, . . . , n. We extend the concept of the Filippov solution to the
differential equations (1) as follows:

Definition 4 (Forti & Nistri, 2003). A function x : [−τ , T ) →

Rn, T ∈ (0,+∞], is a solution (in the sense of Filippov) of the
discontinuous system (1) on [−τ , T ), if:
(I) x is continuous on [−τ , T ) and absolutely continuous on [0, T );
(II) x(t) satisfies

ẋ(t) ∈ −D(t)x(t)+ A(t)F(x)+ B(t)F(x(t − τ(t)))+ J(t),
for a.e. t ∈ [0, T ). (5)

Or equivalently,
(II′) there exists a measurable function α = (α1, α2, . . . , αn)

T
:

[−τ , T ) → Rn, such that α(t) ∈ F(x) for a.e. t ∈ [−τ , T ) and

ẋ(t) = −D(t)x(t)+ A(t)α(t)+ B(t)α(t − τ(t))+ J(t),
for a.e. t ∈ [0, T ) (6)

where the single-valued function α is the so-called measurable se-
lection of the function F, which approximates F in some neighbor-
hood of Graph(F).

It is obvious that, for all f ∈ F , the set-valued map x(t)
↩→ −D(t)x(t) + A(t)F(x) + B(t)F(x(t − τ(t))) + J(t) has
nonempty compact convex values. Furthermore, it is upper-semi-
continuous (Aubin & Cellina, 1984) and hence it is measurable.
Here, we remark that all the set-valued functions obtained by
Filippov regularization applied to functions f ∈ F verify the
above several properties. Hence, by the measurable selection the-
orem (Aubin & Frankowska, 1990), if x(t) is a solution of (1), then
there exists a measurable function α(t) ∈ K [f (x(t))] such that for
a.e. t ∈ [0,+∞), the Eq. (6) is true.

Definition 5 (Lu & Chen, 2006). For any continuous function θ :

[−τ , 0] → Rn and any measurable function ψ : [−τ , 0] → Rn,
such that ψ(s) ∈ F(θ(s)) for a.e. s ∈ [−τ , 0], an absolute con-
tinuous function x(t) = x(t, θ, ψ) associated with a measurable
function α(t) is said to be a solution of the Cauchy problem for
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