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a b s t r a c t

The local variational method is a technique to approximate an intractable posterior distribution in
Bayesian learning. This article formulates a general framework for local variational approximation and
shows that its objective function is decomposable into the sum of the Kullback information and the
expected Bregman divergence from the approximating posterior distribution to the Bayesian posterior
distribution. Based on a geometrical argument in the space of approximating posteriors, we propose an
efficient method to evaluate an upper bound of the marginal likelihood. Moreover, we demonstrate that
the variational Bayesian approach for the latent variable models can be viewed as a special case of this
general framework.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Bayesian learning is inwide use inmany applied data-modeling
problems, and it is often accompanied by approximation schemes
since it requires intractable computation of posterior distributions.
Local variational approximation (LVA), also known as direct site
bounding, is a technique to approximate the Bayesian posterior
distribution by an analytically computable one. Bishop (2006)
provides a tutorial on this scheme in terms of convex duality theory
(Jordan, Ghahramani, Jaakkola, & Saul, 1999). Representative
applications of this scheme include logistic regression (Bishop,
2006; Jaakkola & Jordan, 2000), the Gaussian process classifier
(Gibbs & MacKay, 2000), mixture of experts (Bishop & Svensen,
2003), and sparse linear models (Seeger, 2008, 2009; Wipf & Rao,
2007).

LVA forms lower and/or upper bounds of the unnormalized
posterior distribution. The approximation is optimized so as to
maximize (minimize) the lower (upper) bound of the normalizing
factor, also known as the marginal likelihood of the Bayesian
posterior distribution. However, learning algorithms based on LVA
have been derived on a case-by-case basis since LVA lacks a general
framework and the principle behind it has yet to be described.

In this article, we investigate the relationship between informa-
tion divergences and LVA to provide a general framework for this
scheme. More specifically, we first show that the discrepancy be-
tween the log-marginal likelihood, also known as the free energy,
and its bound by LVA is expressed as the sum of the Kullback infor-
mation and the expected Bregman divergence. Decomposing the
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bounds of the free energy provides a general interpretation of the
optimization of LVA in terms of the minimization of the respective
divergences. Moreover, it provides an efficient method for com-
puting the lower bound of the free energy by using only the result
of the upper bound minimization. We demonstrate how these re-
sults apply to practical models by taking two examples. One is for
the kernelized logistic regression model, also known as the rele-
vance vector machine. Another is for latent variable models such
as the Gaussian mixture model and the hidden Markov model. We
show that the so-called variational Bayesian method for the latent
variable models can be viewed as a special case of LVA.

The rest of the paper is organized as follows. Section 2
summarizes the general framework of LVA. Section 3 derives
equalities for the information divergences related to LVA. Section 4
elaborates on optimization of the approximation and describes
an efficient method to combine the lower and upper bounds of
the free energy. In Section 5, we demonstrate two applications
of LVA to concrete models. Section 6 provides discussions on the
comparison of general LVA with other approximation schemes.
Section 7 concludes this paper.

2. Local variational approximation

Assume that we are given training examples or observations
t = {t1, t2, . . . , tn}, where each observation ti is defined in some
domain. Letw ∈ Rd be the parameter vector, and consider Bayesian
learning for amodel p(t|w).1 By using the prior distribution p0(w),

1 The formulation in this paper also applies to discriminative or regression
models by simply replacing p(t|w) with the conditional distribution p(t|x,w) of
the outputs t = {t1, . . . , tn} given the inputs x = {x1, x2, . . . , xn}. Section 5.1
provides an example of this case.
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the Bayesian posterior distribution of the parameter w is defined
by

p(w|t) =
p(t|w)p0(w)
p(t|w)p0(w)dw

=
p(w, t)

Z
. (1)

Then Bayesian learning requires calculating the predictive distri-
bution p(t|t) =


p(t|w)p(w|t)dw as an estimate of the underly-

ing distribution or, for example, the posterior mean

wp(w|t)dw

as an estimate of the unknown parameterw.
However, as is often the case, the normalizing constant of the

posterior distribution (1),

Z = p(t) =

∫
p(t|w)p0(w)dw,

called the marginal likelihood, is analytically intractable, and so
is the Bayesian posterior distribution (1). Examples include the
case of the logistic regressionmodel (the Bernoulli likelihood)with
the Gaussian prior distribution (Jaakkola & Jordan, 2000) and that
of the Gaussian model with the sparsity-inducing prior (Seeger,
2008).

Example 1. Consider the following simple example of the pair of
the Bernoulli distribution for t ∈ {0, 1} and the Gaussian prior
distribution forw ∈ R,

p(t|w) = exp{tw − log(1 + ew)} (2)

and

p0(w) =
1

√
2π

e−w2/2.

The Bernoulli distribution has the probability of success (t = 1)
ew

1+ew . Given the observation t , the integration∫
p(t|w)p0(w)dw

is not analytically tractable, and hence prevents the calculation
of the posterior distribution p(w|t). This is mainly due to the
existence of the term − log(1 + ew) in the exponent of Eq. (2). We
will revisit this example in Sections 3 and 5.1.

LVA forms upper and/or lower bounds of the joint distribution
p(w, t), denoted by pλ(w, t) and p

ξ
(w, t), respectively. If the

bounds satisfying

pλ(w, t) ≥ p(w, t) and (3)

p
ξ
(w, t) ≤ p(w, t), (4)

for all w and t , are analytically integrable, then, by normalizing
the bounds instead of p(w, t), LVA approximates the posterior
distribution by

pλ(w|t) =
pλ(w, t)
Z(λ)

, and (5)

pξ(w|t) =

p
ξ
(w, t)

Z(ξ)
, (6)

respectively, where Z(λ) and Z(ξ) are the normalization constants
defined by

Z(λ) =

∫
pλ(w, t)dw

and

Z(ξ) =

∫
p

ξ
(w, t)dw.

Here, λ and ξ are called the variational parameters, which are
introduced to make the bounds adjustable.

The respective approximations are optimized by estimating the
variational parameters, ξ andλ, so that Z(ξ) ismaximized and Z(λ)
is minimized, since the inequalities

Z(ξ) ≤ Z ≤ Z(λ) (7)

hold by definition.
To consider the respective LVAs in terms of information

divergence in later sections, let us introduce the free energy,

F = − log Z,

following statistical mechanical terminology, and its lower and
upper bounds, F(λ) = − log Z(λ) and F(ξ) = − log Z(ξ). By taking
the negative logarithms on both sides of Eq. (7), we have

F(λ) ≤ F ≤ F(ξ). (8)

Hereafter, we follow the measure of the free energy and adopt the
phrases the lower bound maximization (F(λ) maximization) and
the upper bound minimization (F(ξ) minimization) to signify the
respective local variational approximations (5) and (6).

3. Divergence measures in LVA

In this section, we derive key equations relating LVA with
information divergence. Most existing LVA techniques are based
on the convexity of the log-likelihood function or the log-prior
(Bishop, 2006; Seeger, 2008). We describe these cases by using
general convex functions, φ and ψ , and show that the objective
functions

F(ξ)− F = log
Z

Z(ξ)
≥ 0

and

F − F(λ) = log
Z(λ)
Z

≥ 0

to be minimized in the approximations (5) and (6) are decompos-
able into the sum of the Kullback information and the expected
Bregman divergence.

Let φ and ψ be twice differentiable real-valued strictly convex
functions, and denote by dφ the Bregman divergence associated
with the function φ (Banerjee, Merugu, Dhillon, & Ghosh, 2005),

dφ(v1, v2) = φ(v1)− φ(v2)− (v1 − v2) · ∇φ(v2) ≥ 0, (9)

where ∇φ(v2) denotes the gradient vector of φ at v2.
Let us consider the case when φ andψ are respectively used to

form the following bounds of the joint distribution p(w, t),

p
ξ
(w, t) = p(w, t) exp{−dφ(h(w), h(ξ))}, (10)

pλ(w, t) = p(w, t) exp{dψ (g(w), g(λ))}, (11)

where h and g are vector-valued functions ofw.2
Eq. (10) is interpreted as follows. log p(w, t) includes a term

that prevents analytic integration of p(w, t) with respect to w. If
such a term is expressed by the convex functionφ of some function
h transforming w, it is replaced by the tangent hyperplane,
φ(h(ξ)) + (h(w) − h(ξ)) · ∇φ(h(ξ)), so that log p

ξ
(w, t) makes

a simpler function of w, such as a quadratic function. Remember
that, if log p

ξ
(w, t) is quadratic with respect to w, p

ξ
(w, t) is

analytically integrable by the Gaussian integral.

2 The functions g and h (also ψ and φ) can be dependent on t in this discussion.
However, we denote them as if they are independent of t for simplicity. They are
actually independent of t in the example of Section 5.1 and in most applications
(Bishop, 2006; Seeger, 2008).
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