
Neural Networks 24 (2011) 1120–1127

Contents lists available at SciVerse ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

On the use of interaction error potentials for adaptive brain computer interfaces
A. Llera a,b,∗, M.A.J. van Gerven a,b,c, V. Gómez a,b, O. Jensen a,b, H.J. Kappen a,b

a Radboud University Nijmegen, The Netherlands
b Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
c Institute for Computing and Information Sciences (ICIS), Nijmegen, The Netherlands

a r t i c l e i n f o

Article history:
Received 19 July 2010
Received in revised form 28 January 2011
Accepted 22 May 2011

Keywords:
Brain computer interfaces
Error potential
Adaptive classification

a b s t r a c t

We propose an adaptive classification method for the Brain Computer Interfaces (BCI) which uses
Interaction Error Potentials (IErrPs) as a reinforcement signal and adapts the classifier parameters when
an error is detected. We analyze the quality of the proposed approach in relation to the misclassification
of the IErrPs. In addition we compare static versus adaptive classification performance using artificial and
MEG data.We show that the proposed adaptive framework significantly improves the static classification
methods.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The interest in Brain Computer Interfaces has quickly grown
in the last few years. The possibility to provide disabled people
with new communication channels, such as BCI spellers, new
mobility channels such as BCI drivenwheel chairs or BCI controlled
mechanical prostheses makes this a very attractive research field.
However, the applicability of current BCI systems is still limited
because of a number of problems. One of these problems is the
presence of non-stationarities in the data (Shenoy, Krauledat,
Blankertz, Rao, & Müller, 2006). This causes patterns associated
with each task during the training of the BCI to be different during
testing, leading to a poor performance.

Several approaches have been proposed to overcome this
problem by the introduction of adaptive classification meth-
ods (Sykacek, Roberts, & Stokes, 2004; Shenoy et al., 2006;
Pfurtscheller, Neuper, Schölgl, & Lugger, 1998). In Shenoy et al.
(2006), it is shown how the probability distributions associated
with class features change between training and test sessions, and
assuming that the labels of new incoming trials are known, it is
shown that proper updates in the classifier parameters would im-
prove the performance of the original static classifier. Note that
in the BCI setting we normally do not know the user intention, so
the labels of the trials are unknown. We propose the use of neural
feedback to detect incorrect performance of the device, and to be
able to recover the labels in the case of a binary classification task.
The on-line detection of the wrong performance of a BCI has been
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addressed before by means of Interaction Error Potentials (IErrP)
(Ferrez & Millán, 2008, 2005; Seno, Matteucci, & Mainardi, 2010).

Error-related potentials are potentials detected in the recorded
electroencephalogram (EEG) of a subject just after an error occurs.
The error is the difference between the expected and the actual
result of an action. Error-related potentials have been studied
in many different scenarios since the late 1980s (Falkenstein,
Hohnsbein, Hoormann, & Blanke, 1990; Miltner, Braun, & Coles,
1997; van Schie, Mars, Coles, & Bekkering, 2004; Ferrez, 2007). It
is well known that the presence of an error is usually followed
by what are called event-related negativity and positivity which
are present in the alpha band in the fronto-central channels.
More recently, a study using Magnetoencephalography (MEG)
(Mazaheri, Nieuwenhuis, van Dijk, & Jensen, 2009) has shown that
an erroneous reaction to stimuli is followed by an increase in the
frontal theta and a decrease in the posterior alpha and central beta
powers.

Based on the nature of the feedback, the error-related potentials
can be categorized as response error potentials (Falkenstein et al.,
1990; Mazaheri et al., 2009), feedback error potentials (Miltner
et al., 1997), observation error potentials (van Schie et al., 2004)
and the most interesting for us, interaction error potentials
(IErrP) which are present when a device delivers an erroneous
feedback (Ferrez, 2007).

Since the IErrP are present in the recorded EEG of a subject
controlling a device just after the device returns an unexpected
feedback (the BCI makes a classification error) (Ferrez & Millán,
2008), its detection can help to construct a more robust BCI,
either by correcting the BCI output directly (Ferrez, 2007), or
more interestingly, by adapting the BCI classifier to prevent similar
mistakes in the future. This idea is illustrated in Fig. 1.
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Fig. 1. (a) Classical scenario: brain activity is measured during a period of time, then the task classifier decides the class label given the measured activity and the device
produces an output. (b) Proposed scenario: after task classification, an IErrP classifier uses feedback from the user (subsequent data from zero to one seconds after (a)) to
compare previous user intention with the device output. If an IErrP is detected, the parameters of the task classifier are updated.

Although the possibility of BCI adaptation using error feedback
from the user has been previously proposed (Chavarriaga, Ferrez, &
Millán, 2007), the impact of using an IErrP classifier to improve the
original task classifier has not been studied before in a realistic BCI
setting. In this article, we explore this idea in detail. In Section 2
we introduce a framework based on reinforcement learning for
adaptive BCI using an IErrP classifier as a control signal.We analyze
the effect of IErrP misclassification in terms of false positives and
false negatives, and we measure how the performance of the task
classifier is affected. In Section 3, we first perform the single trial
classification of IErrP and then we apply the proposed adaptive
method toMEGdata collected during a binary forced-choice covert
attention task.

2. Adaptive BCI classifier

In this section we introduce the proposed method to design a
binary adaptive BCI. We consider a binary task with an adaptive
task classifier that learns from the output of a static IErrP classifier
in order to minimize erroneous feedback.

2.1. Adaptive learning rule

Consider the (unobserved) subject’s intention, left or right, that
we denote as target class t ∈ {0, 1} respectively. The generated
brain activity is measured and a vector of feature values x :=

(x1, . . . , xn) is extractedwhich is relevant to discriminate between
both classes. We use the logistic regression model (Bishop, 2007)
which takes the form:

p(t = 1|x,w) = σ(x,w) =
1

1 + e
−

n∑
i=0

wixi

, (1)

where w ∈ Rn+1 is the vector of weights, and x0 = 1 accounts for
the bias term.
The error in the prediction is quantified as the log-likelihood of the
data:

G(x,w, t) = −(t ln σ(x,w) + (1 − t) ln(1 − σ(x,w))). (2)

The output of the task classifier is defined as

t̃ = χ


p(t = 1|x,w) >

1
2


, (3)

where χ returns 1 if its argument is true and 0 otherwise. An
adaptive learning rule for the parameters w updates w in the
direction of the gradient of (2):

1wi = η
∂G(x,w, t)

∂wi
= η(t − σ(x,w))xi, (4)

where η denotes the learning rate.

In a realistic BCI setting however, the intention of the user t
is unknown. We define E ∈ {0, 1} as the user’s true absence or
presence of surprise following the output of the device. Thus E = 0
corresponds to t̃ = t and E = 1 to t̃ ≠ t . After the output of
the task classifier (t̃) is delivered, subsequent brain activity (neural
feedback) is measured and a feature vector y := (y1, . . . , ym) is
extracted and used by the IErrP classifier to provide an estimation
of E, which we denote by Ẽ ∈ {0, 1}. Updates occur only when a
surprise is detected (Ẽ = 1), in which case the observed output t̃
is presumably incorrect, so t = 1 − t̃ and the learning rule (4) for
the task classifier becomes

1wi = ηẼ(1 − t̃ − σ(x,w))xi, (5)

where 1 − t̃ is the opposite label from the output of the task
classifier.

The performance of thismodel clearly depends on the flexibility
of the model to adapt to changes at the correct time scale (Heskes
& Kappen, 1991, 1992), but also on the asymptotic behavior of
the task classifier in relation to the misclassification of IErrP. In
Sections 2.2 and 2.3 we study this relation.

2.2. Effect of IErrP misclassification

The performance of a BCI system based on the previous frame-
work clearly depends on the accuracy of the IErrP classifier. Previ-
ous researchers have reported classification rates of IErrP of around
80%, as well as the stability on IErrP detection across sessions
(Ferrez & Millán, 2008). The misclassification of IErrPs can occur
in two ways (see Fig. 2):

False positives. Correctly classified trials (t̃ = t) are considered
to be erroneous, causing an update of the task classifier
parameters with the wrong class label. We characterize
the rate of false positives with α1.

False negatives. Erroneously classified trials (t̃ ≠ t) are considered
as correct. As a consequence, the task classifier parame-
ters will not be updated when it is desirable. We charac-
terize the rate of false negatives with α2.

Note that the effect of false positives results in learning from in-
correctly labeled data, whereas false negatives result in discarding
potentially useful learning samples.

2.3. Simulations

In order to better understand the asymptotic behavior of the
task classifier in relation to the accuracy of the IErrP classifier
(α1 and α2), we consider an artificial binary class classification
problem in a one-dimensional feature space. For each class t ∈

{0, 1}, the feature is distributed according to a Normal distribution
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