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a b s t r a c t

Optimal stochastic controller pushes the closed-loop behavior as close as possible to the desired one. The
fully probabilistic design (FPD) uses probabilistic description of the desired closed loop and minimizes
Kullback–Leibler divergence of the closed-loop description to the desired one. Practical exploitation of
the fully probabilistic design control theory continues to be hindered by the computational complexities
involved in numerically solving the associated stochastic dynamic programming problem; in particular,
very hard multivariate integration and an approximate interpolation of the involved multivariate
functions. This paper proposes a new fully probabilistic control algorithm that uses the adaptive critic
methods to circumvent the need for explicitly evaluating the optimal value function, thereby dramatically
reducing computational requirements. This is a main contribution of this paper.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Stochastic control design minimizes an expected cost function
with respect to feedback control strategies, e.g. Astrom (1970) and
Bertsekas (2001). It influences selected characteristics, e.g. noncen-
tral secondmoments, of the joint probability density function (pdf)
of variables occurring in the optimized closed loop. The studied
FPD (Guy & Kárný, 2005; Kárný, 1996; Kárný & Guy, 2006) pushes
this joint pdf to the user-specified ideal pdf describing the desired
behavior of the closed loop. The FPD has a strong intuitive appeal
and provides an explicit minimizing strategy. Although the min-
imizer can be obtained explicitly, computational requirements of
the FPD approach are still intensive. Numerically the FPD approach
involves computation of subsequent integrations to minimize an
expected cost function subject to the probability density function
of the system dynamics. Practical implementation of the FPD ap-
proach is difficult because of (1) multivariate integration and curse
of dimensionality (2) non-Gaussian probability density functions
prevent the cost function from being written in a closed analyt-
ical form, which consequently does not allow exploitation of the
rich available analytical results (3) the FPD approach assumes the
existence of perfectly known pdf models of the systems to be con-
trolled, which are rarely available.

The contribution of this paper lies in developing an adaptive
critic solution to the FPD problem. The proposed fully probabilistic
adaptive critic approach uses a critic network that approximates
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the derivative of a cost function derived from a Kullback–Leibler
distance between the joint probability density function of the
closed-loop system and an ideal joint probability density function.
The critic network critiques the controller and the outputs of that
controller, hence considered as a feedback rather than an open loop
controller. The action network provides estimate for the condi-
tional distribution of the optimal control strategy as derived from
the FPD either on or off line. In contrast to the original FPD, the pro-
posed adaptive critic solution reduces the computational require-
ments and does not assume the existence of perfectly known pdf
models of the system dynamics to be controlled. As such, more ro-
bust control strategy can be derived for real world systems where
hypothetical probability measures of the system dynamics are as-
sumed. This paper provides a basis for considering the computa-
tional intelligence-based adaptive critic methods along with the
existing classical FPD approach for developing a more robust and
practically implementable control.

To emphasize, this work uses neural network approximation
methods to complement the techniques of conventional stochastic
control theory,which arewell developed, tested and implemented.
This represents the novelty of the new probabilistic adaptive critic
framework proposed in this paper: whilst the proposed design is
firmly rooted in stochastic control, the needed probabilistic mod-
els are handled by stochastic version of neural networks. These are
proved to be very effective tools for obtaining probabilistic models
of stochastic linear and nonlinear mappings. The new design pro-
vides a general solution for stochastic systems subject to random
inputs and deterministic systems characterized by functional un-
certainty with unknown probability density functions. Hence the
contribution of this work to intelligent control stems from the na-
ture of the plant and the environment being considered,which cov-
ers functional uncertainty and randomness. These are the typical
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conditions under which an intelligent controller is expected to op-
erate so as to improve the performance and autonomy of conven-
tional control schemes.

Throughout, ≡ is defining equality; f (·|·) stands for a probabil-
ity density function (pdf); the conditioning symbol | is also used as
separator in functions that need not to be pdfs; t labels discrete-
time moments, t ∈ {1, . . . ,H}; H ≤ ∞ is a given control horizon;
dt = (xt , ut) is the data record at time t consisting of an observed
vectorial measurable state xt and of an optional vectorial system
input ut ; d(t) stands for the sequence (d1, . . . , dt); integrals are
multiple and definite over the integrand domain.

2. Problem formulation

Assume that the system can be represented by the following
nonlinear stochastic model
xt = g(xt−1, ut , ϵt), (1)
where xt is the measured state vector, ut is the control input to the
system, ϵt is a white noise, which has zero mean and covariance
P , and g(.) is an unknown nonlinear function that represents the
system dynamics. Because of the existence of the noise, only the
conditional probability density functions (pdfs) of the future state
values can be specified at each instant of time t as follows
s(xt |ut , xt−1). (2)
In general s(·|·) needs not to be known and no assumption is made
on whether ϵt has a known probability density function.

The objective of the FPD is then to determine a randomized
optimal control law described by the conditional pdf
c(ut |xt−1) (3)
thatminimizes theKullback–Leibler divergence (KLD) between the
actual joint pdf f (D) of the observed data D = (x(H), u(H)) and
the ideal joint pdf I f (D) acting on a set possible Ds and defined as
follows

D

f ‖

I f


≡

∫
f (D) ln


f (D)

I f (D)


dD. (4)

The KLD in (4) has the following key property
D(f ‖

I f ) ≥ 0, D(f ‖
I f ) = 0 iff

f =
I f almost everywhere on D. (5)

The joint pdf f (D) ≡ f (d(H)) of the data sequence D ≡ d(H) is the
most complete probabilistic description of the (observed) behavior
of the closed control loop. The chain rule for pdfs (Peterka, 1981)
allows its factorization as follows

f (D) =

H∏
t=1

s(xt |ut , xt−1)c(ut |xt−1). (6)

The first generic factor in (6) is the conditional pdf of the system
dynamic given in (2) and the second generic term describes
the optional (randomized) causal controller given in (3). To
reemphasize, probability density functions of the systemdynamics
and inverse controller are assumed to be unknown and need
to be estimated in this article. The estimation method of these
probability density functions will be discussed in Section 3.

The interpretation of the ideal pdf as a result of standard control
design implies that it can be factorized in the way mimic to (6)
with an ‘‘ideal’’ system model Is(xt |ut , xt−1) and ‘‘ideal’’ controller
Ic(ut |xt−1) mimic to (2) and (3), respectively

I f (D) =

H∏
t=1

Is(xt |ut , xt−1)
Ic(ut |xt−1). (7)

Minimization of (4) with respect to the control input can be
obtained recursively by first defining − ln(γ (xt−1)) to be the
expected minimum cost-to-go function (alternatively called value
function) corresponding to (4)

− ln(γ (xt−1)) = min
c(uτ |xτ−1)

H
τ≥t


H−

τ=t

∫
f (dt , . . . , d(H)|xt−1)

× ln


s(xτ |uτ , xτ−1)c(uτ |xτ−1)

Is(xτ |uτ , xτ−1)Ic(uτ |xτ−1)


× d(dt , . . . , d(H)),

for arbitrary τ ∈ {1, . . . ,H}. Using this definition minimization
is then performed recursively to give the following recurrence
functional equation

− ln(γ (xt−1)) = min
c(ut |xt−1)

∫
s(xt |ut , xt−1)c(ut |xt−1)

×

ln


s(xt |ut , xt−1)c(ut |xt−1)

Is(xt |ut , xt−1)Ic(ut |xt−1)


  

≡ partial cost H⇒U(xt ,ut )

− ln(γ (xt))  
optimal cost-to-go


× d(xt , ut). (8)

Full derivation of (8) is given in the Appendix. Eq. (8) constitute the
recurrence equation of the dynamic programming solution to the
FPD control problem.

The recurrence equation can then be used backward in time to
obtain an approximate solution to the exact optimal control his-
tory. Here the evaluation of any control action ut , at time t , in-
volves performingH−t subsequent integrations. Furthermore, the
evaluation of the optimal cost-to-go function, γ (xt−1) involves re-
peating these subsequent integrations many times. Using stored
values of later optimal cost-to-go, the backward propagation is
implemented to evaluate the control strategy, which means very
large storage requirements. This backward dynamic programming
approach is very expensive computationally for higher dimen-
sional systems. The required expansion of the state and storage of
all optimal cost lead to a number of computations that grows ex-
ponentially with the number of the state variables, a phenomenon
known as the curse of dimensionality.

3. An adaptive critic approach to the fully probabilistic control

In this paper, we seek to avoid the difficulties of the FPD arising
from the multivariate integration and the curse of dimensionality.
This can be achieved by way of the adaptive critic methods
derived from the forward dynamic programming approach. They
use a critic network to approximate the optimal cost-to-go and
an action network to provide prediction for the optimal control
policy. The critic methods overcome the curse of dimensionality
problem through function approximation while approaching the
optimal solution over time. The main objective here is to achieve
satisfactory convergence to the optimal or near-optimal solution.

Adaptive critic designs are neural network based designs for
optimization that combine concepts of reinforcement learning
and approximate dynamic programming (Lin, 2011; Lin & Yang,
2008; Liu, Javaherian, Kovalenko, & Huang, 2008; Prokhorov,
Santiago, & Wunsch, 1995; Prokhorov & Wunsch, 1997; Si,
Barto, Powell, & Wunsch, 2004). They consist of two neural
networks, an action network that produces optimal actions and
an adaptive critic that approximates the performance of the action
network (Balakrishnan & Biega, 1996; Han & Balakrishnan, 2002;
Kulkarni & KrishnaKumar, 2003). Depending on the specific role
performed by the key component called the critic, the critic
network approximates the optimal cost-to-go function or its
derivative and is then trained using recursive equations derived
from dynamic programming (Werbos, 1992). The critic network is
trained forward in time, which reduces computational time and
storage requirements in real time control applications. This also
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