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a b s t r a c t

CMOL CrossNets, hybrid CMOS/nanoelectronic neuromorphic circuits, may open up exciting opportuni-
ties to build artificial intelligence similar to the brain. However, limited functionality of nanodevices used
in CMOL circuits causes significant challenges to train CrossNets with the usual algorithms. In order to
overcome these challenges, we developed an in-situ variety of the error backpropagation method for
supervised training of CrossNet-based pattern classifiers. Although this algorithm successfully trained
CrossNets to perform simple benchmark classification tasks in Proben1, we found that it did not scale up
to larger problems such as the MNIST dataset. Therefore, we propose an alternative in-situ method, com-
bining training with the hidden layer build-up. Simulated results suggest that our new in-situ approach
is appropriate to train CrossNets to perform classification on practical problems.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The development of hybrid CMOS/nanoelectronic integrated
circuits (DeHon & Likharev, 2005; Heath, Kuekes, Snider, &
Williams, 1998; Kuekes, Snider, & Williams, 2005; Likharev,
2008; Strukov & Likharev, 2005; Türel, Lee, Ma, & Likharev,
2004), particularly those of the so-called CMOL (CMOS/MOLecular)
variety (Likharev, 2008; Strukov & Likharev, 2005), provides an
opportunity to advance not only digital microelectronics (DeHon
& Likharev, 2005; Heath et al., 1998; Kuekes et al., 2005), but
also mixed-signal neuromorphic networks (Lee & Likharev, 2005,
2006, 2007; Ma & Likharev, 2007; Strukov & Likharev, 2005; Türel
et al., 2004). In neuromorphic networks, named CrossNets, a CMOS
subsystem is used to build neural cell bodies (‘‘somas’’), whereas
a nanoelectronic subsystem (a nanowire crossbar with simple
two-terminal devices at every crosspoint) implements synaptic
communications between somas (Fig. 1).

The crosspoint devices, playing the role of elementary binary
synapses (in Fig. 1, shown with circles), function as latching
switches. In other words, they have two-internal states: an ON
statewith finite conductance, and anOFF state inwhich the current
through the device is negligibly small. Recently, reproducible
fabrication of such devices based on metal oxides (Chen et al.,
2005) and chalcogenide materials (Chen et al., 2006) has been
reported. Taken together with the fast progress of nanowire
crossbar fabrication (Green et al., 2007; Jung et al., 2006), such
advances lead us to believe that the experimental demonstration of
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CMOL circuits is imminent (for a recent review, see Likharev, 2008).
Indeed, Xia et al. (2009) were able to fabricate small-scale hybrid
circuits consisting of a CMOS subsystem and a nanowire grid.
In CrossNets, voltages applied by pre-synaptic cells through the
‘‘axonic’’ nanowires induce currents through all ON-state latching
switches. Passive summation of these currents in each ‘‘dendritic’’
nanowire creates the necessary input for each post-synaptic soma:

yi =

M−
j=1

wijxj. (1)

The operating speed of CrossNets depends mostly on how fast
nanowires can be charged. Our earlier estimates of charging time
constant predicted that the conduction delay of signals between
CMOS cells is of an order of magnitude of 100 ns when a cell
is connected to 1000 pre-synaptic cells (for detailed estimates,
refer to Lee & Likharev, 2007; Türel et al., 2004). This delay is
three orders of magnitude shorter than the conduction delay
of AMPA synapse with the rise time constant being ∼0.5 ms.
Consequently, CrossNets could outperform the mammalian cortex
at least in terms of the signal propagation speed. Gao and
Hammerstrom (2007) explored four different potential hardware
implementations of both non-spiking and spiking neural networks.
For non-spiking neural networks, their analysis suggested that the
CrossNets could be comparable to biological systems in terms of
densities and speeds. When it comes to spiking neural networks,
CrossNets are denser, faster and more power-economic than
the digital CMOS implementation unless the connectivity occurs
sparsely. Providing sparse 0.1% connectivity, they found CrossNets
are advantageous due to lower power consumption. The more
recent study of Zaveri and Hammerstrom (2010) indicated that
CrossNets provide the best performance/cost ratio for cortex-scale
hardware.
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Fig. 1. The simplest (feedforward, binary-synapse) CrossNet. The axonic nanowire
(shown as red) and dendritic nanowires (shown as blue) are physically similar.
For clarity, only a fraction of M the elementary synapses (latching switches)
contributing to one post-synaptic signal is shown (by green circles). The devices,
in fact, form a continuous 2D array covering the chip area including CMOS-
implemented somatic cells (shown as gray). Open points indicate the open-circuit
terminations of axonic and dendritic lines. Due to these terminations, somas do not
communicate directly (but only via synapses); they also limit the nanowire segment
lengths and hence the cell connectivity M . (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 2. The multi-valued synapse of a CMOL CrossNet. Gray rectangles show resistive
strips connecting n nanowires. Manipulating applied voltages V1 and V2 , the
synaptic weight may be adjusted to any of the values w = wmax(l/n2), where l
is an arbitrary integer between 0 and n2 (Lee & Likharev, 2007).

However, CMOL hardware imposes substantial limitations on
CrossNet training procedures. Major challenges occur due to the
following;

• Only binary synaptic communications are available through
nanodevices (bi-stable latching switches), but most learning
algorithms require continuous synaptic weights.

• The yield of nanodevice fabrication is low. In other words, the
rates of defective devices would be high.

Our group has developed the training algorithms to overcome
these challenges. Interestingly, their effects are not significant for
Hopfield-type networks. The capacity of a CrossNet-basedHopfield
network dropped not considerably (e.g., by ∼30% at 99% fidelity)
from that of a conventional Hopfield network with continuous
synaptic weights (Türel et al., 2004), even though only binary
synapses deliver intercommunications among (CMOS) somas.
However, binary synapses imposed substantial penalty on fidelity
of the feedforward network, Multi-Layer Perceptrons (MLP). We
found that the degraded feedforward network performance could
be restored if multi-valued synapses, arrays of n × n nanodevices
shown in Fig. 2, are implemented on a CMOL chip (Lee & Likharev,
2007; Türel et al., 2004).

CrossNet-based MLPs can be trained for classification by
importing weights, previously calculated by an external tutor, into
a CMOL circuit (Lee & Likharev, 2007; Likharev, 2008). This weight
import procedure seems satisfactory for certain types of important
tasks, for example, ultrafast recognition of a particular face in
a large crowd (Lee & Likharev, 2005). However, for some large-
scale applications, it may be impracticable to build and train such
external tutor networks. Therefore, we developed (Lee & Likharev,
2006, 2007) a method for self-contained (‘‘in-situ’’) training of
CrossNet pattern classifiers. Although the method successfully
trained CrossNets to perform simple classification tasks in Proben1
(Prechelt, 1994), its fidelity for a larger classification problem, the
MNIST dataset (LeCun, Bottou, Bengio, & Haffner, 1998) of 60,000
handwritten-digits, has turned out to be quite poor (see Appendix).

The aim of this work is to suggest and explore an alternative
method of in-situ training of CMOL CrossNets. In Section 2, for
reader’s convenience, we briefly summarize the basic idea of
the in-situ synapse adaptation rule (Lee & Likharev, 2006), In
Section 3, we discuss two forms of novel constructive algorithms
developed for training CrossNets. In Section 4, we present
simulation results, which suggest that CrossNets can be trained
with in-situ algorithms to perform complex classification. The
classification fidelity of CrossNets trained with 10,000 examples
was comparable to the error rate 4.5% reported by LeCun et al.
(1998), and it became even better with more training examples.
In Section 5, we summarize our results and address future plans.

2. In-situ adaptation rule

Fig. 3 demonstrates our idea (Lee & Likharev, 2006) of in-situ
adaptation of nanodevices at cross-points using the ‘‘stochastic
multiplication’’ (in a different form, first discussed by Kondo and
Sawada (1992)). Each resistive strip connecting n nanowires is
biased by the voltage Vi, the output of a comparator fed by
signal ±xi and a random signal REFi with a uniform probability
distribution within the range [0, xmax]. If the signal is larger than
the current value of REFi, the comparator’s output is constant:
Vi ∼= (Vth/2)sgn(±xi). If not, it is zero. Vth, the threshold voltage,
triggers a nanodevice to switch its state from one to another
(Likharev, 2008; Strukov & Likharev, 2005). As a result, the state
of the nanodevice can be switched only when both comparators
(C1 and C2) provide such outputs into the same nanodevice. The
probability of the nonzero output is clearly proportional to xi, and
hence the probability of having nanodevices to be updated is

PΓ = P1P2 =
x1x2
x2max

. (2)

In order to keep the weight change proportional to sgn(x1x2),
it is necessary to address each of 4 switch arrays of the composite
synapse (Fig. 3) independently. The simplest way is to use a 4-step
time division multiplexing procedure with a global shift S(t) =

±S0 added to all nanowires. In each step, the signs of global shift
S0 and xi alternate according to the rule shown in the table inset in
Fig. 3. We showed that if the period t of time division multiplexing
(with random values of REFi at every period) is much shorter than
the characteristic time τ of nanodevice switching, the resulting
average weight change follows a Hebbian-like rule;

⟨1w⟩ = ηx1x2


(wmax − w) for x1x2 > 0,
(wmax + w) for x1x2 < 0 (3)

where η = 1t/τ is the effective learning rate.
As the error backpropagation training rule (Hertz, Krogh, &

Palmer, 1991) is based on the weight change proportional to a
product of two signals, this stochastic multiplication described
by Eq. (3) may be used to implement a backpropagation-like
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