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a b s t r a c t

Functional link networks are single-layered neural networks that impose nonlinearity in the input layer
using nonlinear functions of the original input variables. In this paper, we present a fully complex-
valued functional link network (CFLN) with multivariate polynomials as the nonlinear functions. Unlike
multilayer neural networks, the CFLN is free from local minima problem, and it offers very fast learning of
parameters because of its linear structure. Polynomial based CFLN does not require an activation function
which is a major concern in the complex-valued neural networks. However, it is important to select a
smaller subset of polynomial terms (monomials) for faster and better performance since the number of
all possible monomials may be quite large. Here, we use the orthogonal least squares (OLS) method in
a constructive fashion (starting from lower degree to higher) for the selection of a parsimonious subset
of monomials. It is argued here that computing CFLN in purely complex domain is advantageous than
in double-dimensional real domain, in terms of number of connection parameters, faster design, and
possibly generalization performance. Simulation results on a function approximation, wind prediction
with real-world data, and a nonlinear channel equalization problemexhibit that theOLS based CFLNyields
very simple structure having favorable performance.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Complex-valued data arise in various applications, such as array
and radar signal processing, magnetic resonance imaging, commu-
nication systems, signal representation in complex baseband, and
processing data in the frequencydomain (Hirose, 2006). Apart from
this, some real-valued two dimensional data can have better rep-
resentation as a complex vector field, for example, wind speed and
direction (Mandic, Javidi, Goh, Kuh, & Aihara, 2009) and tree repre-
sentation of hand in the hand gesture recognition system (Ghani,
Amin, &Murase, 2011). Since artificial neural networks (ANNs) are
well established efficient models for processing real-valued data,
several studies have extended the ANNs to the complex domain
with a view to utilizing their strength of nonlinear processing abil-
ities (Benvenuto & Piazza, 1992; Georgiou & Koutsougeras, 1992;
Leung & Haykin, 1991). It is, however, realized that such exten-
sions are not trivial. A major difficulty involves selecting suitable
nonlinear activation functions (Kim & Adali, 2003; Nitta, 1997)
which enables the ANNs to capture nonlinear relationship between
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input and output. In the real domain, there are a bunch of activa-
tion functions having two desirable properties, boundedness and
differentiability. But in the complex domain, one has to adopt the
trade-off between boundedness and analyticity due to Liouville’s
theorem: a bounded entire function is a constant in the complex
domain.

An ad hoc approach to deal with complex-valued data is
to consider the real and imaginary parts separately viewing a
mapping f : Cm

→ Cn alternatively by the mapping g :
R2m

→ R2n, and then to solve the problem in real domain
(Patra, Meher, & Chakraborty, 2009; Patra, Pal, Baliarsingh, &
Panda, 1999). However, such an approach does not exploit the
advantage of complex algebra which is the distinctive feature
of complex-valued neural networks (CVNNs). Consequently, this
real-valued perspective performs poorly in terms of efficient
architecture, convergence and generalization ability (Nitta, 1997).
A better approach is to use well defined complex algebra and
split-type activation functions (Hirose, 2006; Nitta, 1997). The
split-type activation functions are the popular sigmoid functions
(logistic or hyperbolic tangent) applied to the real and imaginary
parts (or sigmoid to the magnitude and identity function to
the phase in polar coordinates) separately. However, there is
still a problem that such functions are inefficient in complex-
valued nonlinear mapping and are unable to provide true gradient
in the error backpropagation learning process (Kim & Adali,
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2003). This shortcoming is mitigated by adopting elementary
transcendental functions at the cost of singularities of various
kinds. The functions, however, havewidely varying response in the
vicinity of discontinuities which may cause a detrimental effect
during the learning process. It seems that there is no conclusive
remark as to how one should choose activation function for a given
problem.

Along with the complex-valued multilayer perceptron (CMLP)
(Kim & Adali, 2003; You & Hong, 1998), there have been a grow-
ing interests in developing complex-valued radial basis function
(CRBF) networks. One of the early works by Chen, Grant, McLaugh-
lin, and Mulgrew (1993) extends the real RBF by using complex
centers and weights. A potential application of CRBF networks
for solving communication channel equalization with a stochas-
tic gradient training algorithm is demonstrated in Cha and Kassam
(1995). In order to design and ensure a parsimonious RBF network
by growing and pruning strategies, Jianping, Sundararajan, and
Saratchandran (2002) have proposed a sequential learning algo-
rithm, referred to as complexminimal resource allocation network
(CMRAN). Even though the aforementioned approaches employ
complex-valued centers, the response of hidden units remains real
as the hidden units use Gaussian RBFswith Euclidean norm. Hence,
they cannot approximate input–output mapping efficiently, espe-
cially for the phase values. This has been overcome with the de-
velopment of a fully complex-valued RBF (FC-RBF) network with a
fully complex-valued activation function (Savitha, Suresh, & Sun-
dararajan, 2009). It is shown that the FC-RBF outperforms the con-
ventional CRBF networks in its approximation ability. The authors
have also proposed an efficient learning scheme for the FC-RBF
that use a self-regulatory system (Savitha, Suresh, & Sundararajan,
2010). The activation function used in FC-RBF, however, is one of
the elementary transcendental function having singularities.

Besides the issue of activation function in complex domain, the
complex-valuedmultilayer structures (CMLPs and CRBF networks)
share similar problems with the networks in real domain. The
Multilayer structures are computationally intensive because of
nonlinear projections by the hidden layers (Patra et al., 1999).Most
importantly, their training is difficult due to several problems,
including localminima trapping, saturation of activation functions,
slow convergence, initial weight dependence, and overfitting due
to structural complexity (Sierra, Macias, & Corbacho, 2001).

The problems stated above can be avoided by removing the
hidden layers, but without giving up the nonlinearity. Instead,
nonlinearity can be imposed in the input layer by functional
expansion of input variables. The resulting model has a flat
structure, i.e., single layer network. This alternative approach
is known as functional link networks (FLNs) in the literature
(e.g., Pao, 1989) and advocated for alleviating the previously
mentioned problems of multilayer structures. However, the price
to be paid for is the proper choice of functional expansion,
for example, polynomials, trigonometric functions, or orthogonal
basis functions.

In the real domain, many works on the FLNs can be found en-
compassing pattern recognition, control applications, and commu-
nication channel equalization (Dehuri & Cho, 2010b; Pao & Phillips,
1995; Patra & Pal, 1995). Only few attempts have been taken to-
ward the application of FLNs for processing complex-valued data.
In Patra et al. (1999), despite the data being complex, the authors
have considered the problem in the real domain separating the real
and imaginary parts. This real-valued perspective does not exploit
the well defined complex algebraic rules, and hence, cannot pro-
vide efficient modeling.

In this study, we present a complex-valued functional link net-
work (CFLN) for solving complex-valued function approximation
problems. In order to capture nonlinear relationship between the

input and output, multivariate polynomials are considered. In con-
trast to other possibilities like elementary transcendental func-
tions, polynomials are easy to compute and include higher order
cross product terms. Moreover, polynomials are equally well be-
having in the real and complex domain,whilemost of the transcen-
dental functions have singularities in the complex domain (Kim
& Adali, 2003). Since the number of total terms (or monomials) in
the multivariate polynomial grows exponentially with the degree
and number of input variables, only the relevantmonomials are se-
lected in the CFLN by the orthogonal least squares (OLS) method.
The Polynomial degree is increased in an incremental way until a
negligible improvement is seen from the increment. In this regard,
it is worth mentioning that computing with polynomials are also
prevalent in other CVNNsbecause the nonlinear functions are often
evaluated by the polynomial expansions. Thus, using polynomials
in the input layer does not involve additional computational cost
than the other CVNNs.

To the best of our knowledge, our study is the first of its kind
in the FLNs that considers complex-valued data directly, without
separating the real and imaginary parts. The proposed CFLN offers
a number of advantages over conventional CVNNs. First, it does
not require activation functions which has been a major concern
in the complex domain till now. Second, the cost function, i.e.,
mean squared error (MSE), has a single minimum as it is quadratic
in parameters. Therefore, fast learning algorithms such as OLS
or recursive least squares (Sayed, 2008) can be used to learn
the weight parameters in the CFLN. In contrast, learning in the
multilayer architectures often becomes difficult due to the local
minima problem and slow convergence of error backpropagation.
Third, selecting a near optimal set ofmonomials by theOLSmethod
yields very simple CFLNs with favorable performance.

The remaining sections of the paper are structured as follows.
Section 2 provides a brief overview of FLNs in a general framework.
A detailed description of CFLN design by the OLS method
is presented in Section 3. Experimental results comprising a
complex-valued function approximation, a channel equalization,
and a real-world wind prediction problem are provided in
Section 4. Finally, conclusion is given in Section 5.

2. Brief overview of FLNs

The FLNs are single-layered networks without hidden layers,
where the input layer is formed by some predefined functions of
input variables in addition to the original variables. The resulting
network is flat as shown in Fig. 1. Let the original variables be
x = (x1, x2, . . . , xN). Then the input layer is constructed as
(x1, x2, . . . , xN , φ1(x), . . . , φM(x)). The output units are simply
linear combinations of the enhanced input units; each output can
be written as

yk =
N
i=1

αkixi +
M
j=1

βkjφj(x) 1 ≤ k ≤ K (1)

where the functions φj(x), 1 ≤ j ≤ M , are linearly independent,
for example, polynomials, trigonometric, or hyperbolic functions of
input variables. The symbol K denotes the total number of output
units.

In the multilayer networks like MLPs, successive layers carry
out a sequence of mappings in order to enhance original input
representation (Nilsson, 1965) with the help of a supervised
learning method. The learning, however, suffers from various
limitations, such as slow convergence, local minima trapping,
initial weight dependence, and saturation of activation functions
making the learning process difficult. The viewpoint of enhancing
input representation in the FLNs is same as in MLPs, but the
enhancement is carried out right from the start in the input layer, in
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