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a b s t r a c t

In this article, a novel unsupervised neural network combining elements fromAdaptive Resonance Theory
and topology-learning neural networks is presented. It enables stable on-line clustering of stationary
and non-stationary input data by learning their inherent topology. Here, two network components
representing two different levels of detail are trained simultaneously. By virtue of several filtering
mechanisms, the sensitivity to noise is diminished, which renders the proposed network suitable for
the application to real-world problems. Furthermore, we demonstrate that this network constitutes an
excellent basis to learn and recall associations between real-world associative keys. Its incremental nature
ensures that the capacity of the corresponding associative memory fits the amount of knowledge to
be learnt. Moreover, the formed clusters efficiently represent the relations between the keys, even if
noisy data is used for training. In addition, we present an iterative recall mechanism to retrieve stored
information based on one of the associative keys used for training. As different levels of detail are learnt,
the recall can be performed with different degrees of accuracy.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

For numerous tasks, the traditional off-line learning approach
with separate training, validation, and test phases is not sufficient.
The diagnosis of genetic abnormalities (Vigdor & Lerner, 2006),
interactive teaching of a humanoid robot (Goerick et al., 2009), and
the subcellular localisation of proteins (Tscherepanow, Jensen, &
Kummert, 2008) constitute several examples for such problems.
As a consequence, incremental on-line learning has become more
popular in recent years, since such machine learning techniques
are required to gradually complete knowledge or adapt to non-
stationary input distributions.

In this article, the TopoART network (Tscherepanow, 2010) is
presented. It combines incremental and fast on-line clustering
with topology learning. As TopoART originates from Adaptive
Resonance Theory (ART) networks, in particular Fuzzy ART
(Carpenter, Grossberg, & Rosen, 1991), TopoART creates stable
representations while retaining its ability to learn new data. In
order to render TopoARTmore suitable for real-world applications,
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it was designed in such a way that it becomes insensitive to noise.
Furthermore, it creates a hierarchical representation of the input
distribution reflecting different levels of detail.

TopoART can be extended to a hierarchical hetero-associative
memory called TopoART–AM. Here, an iterative recall mechanism
provides missing keys in decreasing order of confidence. Due to
the properties inherited from TopoART, namely insensitivity to
noise as well as the ability of incremental and fast on-line learning,
this associative memory is particularly well-suited to real-world
applications.

Related approaches are discussed in Section 2. Afterwards, de-
tails of TopoART and its extension TopoART–AM are introduced in
Section 3. In Section 4, the results of TopoART and TopoART–AM
applied to different types of datasets are compared to several state-
of-the-art methods. Here, their ability to cope with noise and to
incrementally learn new input data from non-stationary distribu-
tions will be shown. In addition, the iterative recall mechanism of
TopoART–AMwill be demonstrated. Finally, Section 5 summarises
the most important points of this article.

2. Related work

As we intend to solve two different types of problems using
TopoART, namely clustering and the learning of associations, we
discuss related work from both research fields.
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2.1. Clustering techniques

The k-means algorithm (MacQueen, 1967), which constitutes
a very well-known unsupervised learning technique, determines
a partitioning of an input distribution into k regions or rather
clusters. Each cluster is represented by a reference vector. The
choice of the number of required clusters constitutes a crucial
problem. For this reason, the Linde–Buzo–Gray (LBG) algorithm
(Linde, Buzo, & Gray, 1980) was developed. Based on a fixed
training set, it successively computes sets of reference vectors of
increasing size until a stopping criterion is fulfilled. The topological
structure of the input data is not considered by this algorithm.

In 1982, the Self-Organising Feature Maps (SOFMs), which map
input data to a lattice of neurons, were introduced by Kohonen.
Here, the reference vectors are encoded by the weights of the
neurons. The lattice possesses a predefined topological structure,
the dimension of which is usually lower or equal to the dimension
of the input space. If the input distribution is not completely
known in advance, an appropriate lattice structure is difficult
to choose. This problem was solved by the Growing Neural Gas
(GNG) algorithm (Fritzke, 1994). It allows for the incremental
incorporation of new neurons and the learning of the input
distribution’s topology by adding and deleting edges between
different neurons.

The GNG algorithm is contained as a special case in a recently
proposed extension, which is called the limited branching tree
GrowingNeural Gas (lbTreeGNG) (Kortkamp&Wachsmuth, 2010).
It creates hierarchical codebooks that locally preserve the topology
of the input space, while allowing a very efficient mapping
from input samples to codewords and avoiding overfitting during
training.

However, the above-mentioned methods do not directly
employ mechanisms that deal with the stability–plasticity dilemma
(Grossberg, 1987). A continuing presentation of input data results
in a continuing adaptation of the neurons’ weights, i.e. the
reference vectors, and the network topology. Thus already-learnt
structuresmay get altered or even lost. This can occur, for instance,
if the input distribution is complex or due to small changes of the
input probabilities. The sequencing of the input data may cause a
similar effect.

Adaptive Resonance Theory (ART) networks have been pro-
posed as a solution to the stability–plasticity dilemma (Gross-
berg, 1987). These networks learn top–down expectations which
are matched with bottom–up input. The expectations, which are
called categories, summarise sets of input data into clusters. De-
pending on the type of ART network, the categories exhibit dif-
ferent shapes such as a hyperspherical shape (Anagnostopoulos
& Georgiopoulos, 2000), a hyperelliptical shape (Anagnostopoulos
& Georgiopoulos, 2001), or a hyperrectangular shape (Carpenter
et al., 1991). Besides enabling ART networks to create stable and
plastic representations, the categories allow for an easy novelty de-
tection. But in contrast to SOFMs and GNG, ART networks do not
capture the topology of the input data. Furthermore, their ability
of stable learning leads to an increased sensitivity to noise.

In 2006, the Self-Organising Incremental Neural Network
(SOINN) was introduced by Furao and Hasegawa. Similar to GNG,
SOINN clusters input data by incrementally adding neurons, the
weights of which represent reference vectors, and the topology is
reflected by edges between the nodes. But it has several additional
features. First, SOINN has a two-layered structure representing
the input distribution at different levels of detail. Additionally,
this structure reduces the sensitivity to noise. The second layer
is trained after the training of the first layer has been finished.
Second, novelty detection can be performed based on an adaptive
threshold. Third, each neuron has an individual learning ratewhich
decays if the amount of input samples that it represents increases.

In this way, a more stable representation is achieved. But the
weights of the neurons do not stabilise completely. Furthermore, a
high number of relevant parameters (eight parameters per layer)
has to be set in order to apply SOINN.

The Enhanced Self-Organising Incremental Neural Network
(ESOINN) (Furao, Ogura, & Hasegawa, 2007) solves some of the
above-mentioned problems: by removing the second layer and one
condition for the insertion of new neurons, the number of required
parameters is considerably reduced (4 in total). Furthermore, the
whole network can be trained on-line. But similar to SOINN, the
weights do not stabilise completely. Moreover, ESOINN loses the
ability to create hierarchical representations.

TopoART combines the advantages of ART and topology-
learning networks (see Section 3.1). From its ART ancestors,
it inherits the ability of fast and stable on-line learning using
expectations (categories). These categories are extended by edges
reflecting the topology of the input distribution. Therefore, they
enable the formation of arbitrarily shaped clusters. In addition,
TopoART adopts the ability to represent input data at different
levels of detail from SOINN; but unlike SOINN, it learns both levels
simultaneously.

2.2. Associative memories

There exist several approaches to associative memories,
which are based on clustering methods. Some examples are the
bidirectional hetero-associative memories of Chartier, Giguère,
and Langlois (2009) and of Ichiki, Hagiwara, and Nakagawa
(1993), which incorporate SOFMs, as well as SOIAM (Sudo,
Sato, & Hasegawa, 2009), an associative memory based on a
simplified version of SOINN. In contrast to traditional approaches
such as Hopfield networks (Hopfield, 1982) and bidirectional
associative memories (BAMs) (Kosko, 1988), they do not have to
be trained with noise-free input patterns and perform information
compression: the underlying clusterer summarises similar input
samples to clusters, which may be considered as a simple type
of categorisation. As a consequence, these approaches reduce the
amount of data to be stored which is a major aspect of the
principle of cognitive economy (Goldstone & Kersten, 2003). This is
particularly beneficial for artificial agents such as robots operating
in real-world environments, as they have to process large amounts
of noisy and corrupted data.

The capacity of Hopfield networks and BAMs depends on the
size of the associative keys (Hopfield, 1982; Kosko, 1988). After
the maximum capacity has been reached, further training results
in forgetting the previously learnt data. SOFM-based associative
memories suffer from a similar problem, although they are
capable of generalisation, which increases the capacity. Since the
application of SOFMs requires the topology and network size to be
chosen in advance (e.g., Chartier et al., 2009; Ichiki et al., 1993),
the capacity of these methods is limited as well. Furthermore,
SOFMs do not create stable representations. Hence, catastrophic
forgetting might result from training with non-stationary data.
In contrast, the capacity of SOIAM is not limited, as it is an
incremental network. Its capacity rather fits the learnt knowledge.
But similar to SOINN, the knowledge is not completely stable.
Furthermore, since SOIAM is based on a one-layered version of
SOINN, no hierarchical clustering is performed. This hierarchical
clustering might have been beneficial for real-world tasks, as it
enables the representation of further abstraction levels.

Another important aspect, which needs to be considered, is
the type of information which can be processed. While Hopfield
networks require binary input, BAMs allow for the storage of real-
valued data. Associative memory models incorporating clustering
techniques can be applied to real-valued data as well. But one
data type, which typically occurs in real-world scenarios, is
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