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a b s t r a c t

One of the now standard techniques in semi-supervised learning is to think of a high dimensional data
as a subset of a low dimensional manifold embedded in a high dimensional ambient space, and to use
projections of the data on eigenspaces of a diffusion map. This paper is motivated by a recent work of
Coifman andMaggioni on diffusionwavelets to accomplish such projections approximately using iterates
of the heat kernel. In greater generality, we consider a quasi-metric measure space X (in place of the
manifold), and a very general operator T defined on the class of integrable functions on X (in place of the
diffusion map). We develop a representation of functions on X in terms of linear combinations of iterates
of T . Our construction obviates the need to compute the eigenvalues and eigenfunctions of the operator.
In addition, the local smoothness of a function f is characterized by the local normbehavior of the terms in
our representation of f . This property is similar to that of the classical wavelet representations. Although
the operatorT utilizes the values of the target function on the entire space, this ability results in automatic
‘‘feature detection’’, leading to a parsimonious representation of the target function. In the case when X is
a smooth compact manifold (without boundary), our theory allows T to be any operator that commutes
with the heat operator, subject to certain conditions on its eigenvalues. In particular, T can be chosen to
be the heat operator itself, or a Green’s operator corresponding to a suitable pseudo-differential operator.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

In the last few years, diffusion/Laplacian eigenmaps have
developed into a popular tool for understanding and representing
large, high dimensional, unstructured data. Applications of these
techniques include document analysis (Coifman & Maggioni,
2006), face recognition (He, Yan, Hu, Niyogi, & Zhang, 2005), semi-
supervised learning (Belkin, Matveeva, & Niyogi, 2004; Belkin &
Niyogi, 2004), image processing (Donoho & Grimes, 2002), and
cataloguing of galaxies (Donoho, Levi, Starck, & Martinez, 2002),
to name a few. The special issue of Applied and Computational
Harmonic Analysis (Chui & Donoho, 2006) contains several papers
that serve as a good introduction to this subject.

At a theoretical level, the idea is to assume that the data lies on a
low dimensional compact manifold X embedded in a high dimen-
sional ambient space. Associated with the manifold is a positive
semi-definite differential operator, known as the Laplace–Beltrami
operator. This operator has a discrete spectrum, with the sequence
of eigenvalues ℓ2

k and corresponding eigenfunctions φk. (For sim-
plicity of exposition, the notation used in the introduction is not
necessarily the same as in the rest of the paper.) Projections of
the data on the spaces ΠN = span{φk : ℓk ≤ N} yield impor-
tant dimensionality reduction advantages, as well as information
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about the underlying geometric structures present in the data. In
Maggioni and Mhaskar (2008), we have coined the term diffusion
polynomial for a member of ∪N≥0 ΠN .

The heat kernel, defined formally by

Kt(x, y) =

−
j

exp(−ℓ2
j t)φj(x)φj(y), x, y ∈ X, t > 0, (1.1)

plays an important role in this theory. The approximation of
the heat kernel, respectively the Laplace–Beltrami operator, and
the eigenvalues and eigenfunctions from the data itself has been
studied by many authors, including Belkin and Niyogi (2008a,
2008b), Lafon (2004) and Singer (2006). On the theoretical side,
it is shown in Jones, Maggioni, and Schul (2010) that the heat
kernel leads to a local coordinate systemon theunknownmanifold.
In Coifman and Maggioni (2006), the authors develop a multi-
resolution analysis based on powers of the operator defined by
the heat kernel. Unfortunately, an explicit (theoretical) expression
of the heat kernel is usually not known except in the simplest
of cases. Therefore, Saito (2008) has proposed the use of other
operators which have the same eigenfunctions as the heat kernel,
but can be expressed in a closed form. In Saito (2008), the
author has illustrated this concept in the context of image
processing applications by considering the Green’s function for
certain boundary value problems in place of the heat kernel.

0893-6080/$ – see front matter© 2011 Elsevier Ltd. All rights reserved.
doi:10.1016/j.neunet.2010.12.007

http://dx.doi.org/10.1016/j.neunet.2010.12.007
http://www.elsevier.com/locate/neunet
http://www.elsevier.com/locate/neunet
mailto:hmhaska@gmail.com
http://dx.doi.org/10.1016/j.neunet.2010.12.007


346 H.N. Mhaskar / Neural Networks 24 (2011) 345–359

5 10 15 20 25 30
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0

0.02

0.04

0.06

0.08

0.1

0.12

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Fig. 1. For the function f (x) =
√

| cos x|, the leftmost figure shows |f̂ (k)|, 0 ≤ k ≤ 32, estimated by a 128 point FFT, the middle figure shows the coefficients based on
a Haar wavelet based on 128 equidistant samples of f , the rightmost figure shows the graph of |

∑
|k|≤32 h(k/32)f̂ (k)e

ikx
−
∑

|k|≤16 h(k/16)f̂ (k)e
ikx

|, where h is a suitable
high-pass filter (cf. Section 3). The x axis in the middle and rightmost figure is [0, 2], representing multiples of π .

The objective of this paper is to consider a very general operator
corresponding to a kernel of the form

G(x, y) =

−
j

b(ℓj)φj(x)φj(y), x, y ∈ X, (1.2)

where b is a function satisfying certain technical conditions to be
described later. In particular, our theory includes the following
examples: if b(u) = exp(−tu2), then the kernel reduces to the
heat kernel, and if b(u) = (u2

+ 1)−β/2 for a sufficiently large
β > 0, then we have the Green’s kernel for a pseudo-differential
operator. We develop a frame in terms of the powers of the
operator corresponding to G, and prove that this frame leads to a
sparse representation of functions on the manifold X.

To motivate our ideas, we consider a very simple example from
classical Fourier analysis. We start with 128 equidistant samples
of the function f (x) =

√
| cos x| on [0, 2π ]. The function admits

an analytic continuation at every point except at the singularities
π/2, 3π/2, where the function is not differentiable. The frequency
domain description of f in terms of the Fourier coefficients
f̂ (k), |k| ≤ 32, is shown in the leftmost figure of Fig. 1. It is clear
that they do not reveal any features of f , such as the singularities
at π/2, 3π/2. In contrast, a simple-minded approximation to the
coefficients of f in terms of the Haar wavelet basis is shown in
the middle figure of Fig. 1. The discontinuities of f ′ at π/2, 3π/2
are very clear in terms of the coefficients with a large magnitude.
In a reconstruction of f , only these high magnitude coefficients
need to be retained, the lower coefficients may be neglected,
depending upon the tolerance for error. Thus, a representation of f
in terms of the wavelet basis is far more parsimonious than that in
terms of the classical Fourier coefficients. A theoretical foundation
for this phenomenon is given in terms of a characterization of
local function spaces in terms of the wavelet coefficients in a
greater generality, cf. (Daubechies, 1992, Theorems 9.2.1, 9.2.2).
This sparse representation property is a major reason for the
popularity of wavelets and their successors, ridgelets, curvelets,
shearlets, etc.

Nevertheless, it is well-known that the sequence of Fourier
coefficients contains all the information regarding the target
function. In some applications, such as direction finding in phased
array antennas (Krim & Viberg, 1996) and solutions of partial
differential equations (Tadmor, 1989), it is necessary to find the
locations of singularity in a function when the data is in the
form of its Fourier coefficients. For this reason, many authors
(e.g., Eckhoff, 1995; Gelb & Tadmor, 1999;Mhaskar & Prestin, 2000,
2005b; Tadmor, 1989; Tadmor & Tanner, 2005; Tanner, 2006) have
studied methods to extract such information from the Fourier
coefficients, as well as obtain more parsimonious representations
of a function given the Fourier coefficients rather than wavelet
coefficients. The ideas have been extended to contexts more

general than the classical trigonometric series; a relatively recent
survey is given inMhaskar and Prestin (2005b). Coming back to our
example, the rightmost figure in Fig. 1 shows the frame transform
as analyzed in Mhaskar and Prestin (2005a) based on the same
Fourier information shown in the leftmost figure. It is clear that
our frame transform (coefficients in a discretized form) also detects
singularities, and yields a parsimonious representation analogous
to wavelets.

The ideas in Mhaskar and Prestin (2005b) were developed fur-
ther in Maggioni andMhaskar (2008) to obtain a Littlewood–Paley
decomposition of functions on ‘‘arbitrary’’ quasi-metric measure
spaces, a Riemannian manifold being a particular case. Let X be
a quasi-metric measure space with the quasi-metric ρ (e.g., the
geodesic distance on manifolds) and measure µ (e.g., the volume
measure onmanifolds). Given a sequence of numbers ℓj ↑ ∞ and a
sequence of continuous functionsφj, orthonormalizedwith respect
to µ, we define the Fourier coefficients of an integrable function f
on X by

f̂ (j) =

∫
X
f (y)φj(y)dµ(y), j = 0, 1, . . . .

With a suitably defined compactly supported filter g , we define the
frame transform

τn(f , x) =

∞−
j=0

g


ℓj

2n


f̂ (j)φj(x), n = 0, 1, . . . , x ∈ X. (1.3)

We have shown in Maggioni and Mhaskar (2008) that any
continuous f onX can be expressed as a uniformly convergent sum
f =

∑
∞

n=0 τn(f ), and the smoothness behavior of f is characterized
by the norms of τn, analogous to the results in wavelet analysis,
except that our characterization is for global function classes.

The objectives of this paper are the following:

• We wish to obtain a complete analogue of the aforementioned
results in wavelet analysis for the characterization of local
function spaces in terms of our frame transform.

• We wish to construct the frame transform using only linear
combinations of iterates of the operator corresponding to the
kernel (1.2).
– In order to evaluate the transform as in (1.3) in practice, one

needs to compute the eigenfunctions φj and the eigenvalues
ℓj. While efficient algorithms exist to accomplish these
computations, such a computation for a large number
of eigenfunctions remains a bottleneck in the theory.
Our construction avoids this bottleneck entirely; we no
longer require a computation of either the eigenvalues or
eigenfunctions.

• We wish to formulate our assumptions in terms of the heat
kernel.
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