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a b s t r a c t

In this paper we investigate multistability of discrete-time Hopfield-type neural networks with dis-
tributed delays and impulses, by using Lyapunov functionals, stability theory and control by impulses.
Example and simulation results are given to illustrate the effectiveness of the results.
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1. Introduction

In recent years, there has been increasing interest in neural net-
works such as (Chua & Yang, 1988; Cohen & Grossberg, 1983; Hop-
field, 1982), and bidirectional associative memory (Kosko, 1988)
neural networks, and their potential applications in many areas
such as classification, optimization, signal and image processing,
solving nonlinear algebraic equations, pattern recognition, associa-
tive memories, cryptography and so on.

The state of electronic networks is often subject to instan-
taneous changes, and will experience abrupt changes at certain
instants which can be caused by frequency change, switching phe-
nomenon, or by some noise which do exhibit impulse effects.

In the past decades, a number of research papers have dealt
with dynamical systems with impulse effect as a class of general
hybrid systems. Examples include the pulse frequencymodulation,
optimization of drug distribution in the human body and control
systems with changing reference signal. Impulsive dynamical
systems are characterized by the occurrence of abrupt change in
the state of the system which occur at certain time instants over
a period of negligible duration. The dynamical behavior of such
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systems is much more complex than the behavior of dynamical
systems without impulse effects. The presence of impulse means
that the state trajectory does not preserve the basic properties
which are associatedwithnon-impulsive dynamical systems. Thus,
the theory of impulsive differential equations is quite interesting
and has attracted the attention of many scientists.

In general, most neural networks have been assumed to be in
continuous time. Discrete-time counterparts of continuous-type
neural networks have only been in the spotlight since 2000, even
though they are essential when implementing continuous-time
neural networks for practical problems such as image process-
ing, pattern recognition and computer simulation. Discrete-time
systems with delays have strong background in engineering appli-
cations, among which network based control has been well recog-
nized to be a typical example. Discrete-time neural networks are
more applicable to problems that are inherently temporal in na-
ture or related to biological realities. They perfectly can keep the
dynamic characteristics, functional similarity, and even the bio-
logical or physical resemblance of the continuous-time networks
under certain mild conditions (restrictions) (Huo & Li, 2009; Mo-
hamad, 2001, 2003, 2008; Mohamad & Gopalsamy, 2000). For this
reason, the stability analysis of discrete-time neural networks have
received more and more attention recently.

In the following, we use the notations
Z+

= {1, 2, 3, . . .}, Z+

0 = {0, 1, 2, . . .},

Z−

0 = {. . . ,−2,−1, 0}.
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Continuous-time impulsive hybrid discrete Hopfield-type neu-
ral networks with distributed delays are described by

dxi(t)
dt

= −aixi(t)+

n−
j=1

Tijgj

∫ t

−∞

Kij(t − s)xj(s)ds


+ Ii,

t > 0, t ≠ tk; i = 1, n

x(t−k ) = x(tk), x(t+k ) = x(tk)+ Jk(x),
t = tk, k ∈ Z+

(1)

where the sequence of times {tk}k∈Z+

0
satisfies 0 = t0 < t1 < t2 <

· · · < limk→∞ tk = ∞.
System is equivalent to

dxi(t)
dt

= −aixi(t)+

n−
j=1

Tijgj

∫
∞

0
Kij(s)xj(t − s)ds


+ Ii,

t > 0, t ≠ tk; i = 1, n

x(t−k ) = x(tk), x(t+k ) = x(tk)+ Jk(x), t = tk, k ∈ Z+.

(2)

The constants ai > 0 are the self-regulating parameters of the
neurons, T = (Tij)n×n is the interconnection matrix, gi : R → R
are the neuron input–output activation functions and Ii denotes the
external inputs.

The delay kernels Kij : [0,∞) → [0,∞) are bounded,
piecewise continuous and satisfy∫

∞

0
Kij(s)ds = 1 and ∃µ > 0 s.t.

∫
∞

0
Kij(s)eµsds < ∞.

The jump operators Jk are defined on the following set of functions:

{u ∈ PC((−∞, tk],Rn) : u is left continuous, with first kind
discontinuity at tl, 0 ≤ l ≤ k;u is differentiable on every
interval (tl−1, tl), 0 ≤ l ≤ k}

with values in Rn.
The discrete analogue of system (2) is obtained in the following

way.
Consider a positive number h denoting a uniform discretization

step size and [t/h] the greatest integer in t/h. For convenience, we
denote [t/h] = p, p ∈ Z. We also note that xi(t) takes the form
xi(ph), for t ∈ [ph, (p + 1)h). We shall use this approximation
only for integers p such that the interval [ph, (p+1)h) contains no
moment of impulse effect tk, k ∈ Z+. That is, we assume that there
is not more than one moment of impulse effect in a step. For this,
we suppose that ω = infk∈Z+(tk+1 − tk) > h > 0 and we denote
[tk/h] = pk, k ∈ Z+. For simplicity, we will denote xi(ph) ≡ xi(p)
and Kij(vh) ≡ Kij(v).

We rewrite system (2) in the form

d[xi(t)eait ]
dt

= eait


n−
j=1

Tijgj


∞−
v=1

Kij(v)xj(p − v)


+ Ii


,

t ∈ [ph, (p + 1)h); i = 1, n, p ∈ Z+

0 \ {p1, p2, . . .};

x(pk + 1) = x(pk)+ Jk(x), p = pk, k ∈ Z+.

Now by integrating the first equation over the interval [ph, t], for
t < (p + 1)h, we obtain

xi(t)eait − xi(p)eaiph

=
eait − eaiph

ai


n−

j=1

Tijgj


∞−
v=1

Kij(v)xj(p − v)


+ Ii


t ∈ [ph, (p + 1)h); i = 1, n, p ∈ Z+

0 \ {p1, p2, . . .}.

By letting t → (p + 1)h we get the following discrete analogue
system

xi(p + 1) = e−aihxi(p)+
1 − e−aih

ai

×


n−

j=1

Tijgj


∞−
v=1

Kij(v)xj(p − v)


+ Ii


,

p ∈ Z+

0 \ {p1, p2, . . .}; i = 1, n

x(pk + 1) = x(pk)+ Jk(x), p = pk, k ∈ Z+.

(3)

If we set Ψi(h) =
1−e−aih

ai
, for i = 1, n, it is easy to see that

Ψi(h) > 0. It is clear that the equilibria of continuous-time system
(2) and discrete-time analogue (3) coincide.

In this paper, we will be studying the more general discrete-
time impulsive system with distributed delays of the form

xi(p + 1) = (1 − ai)xi(p)

+

n−
j=1

Tijgj


∞−
v=1

Kij(v)xj(p − v)


+ Ii,

p ∈ Z+

0 \ {p1, p2, . . .}; i = 1, n

x(pk + 1) = x(pk)+ Jk(x), p = pk, k ∈ Z+

(4)

where ai ∈ (0, 1) and the sequence of times {pk}k∈Z+

0
satisfies

0 = p0 < p1 < p2 < · · · < limk→∞ pk = ∞.
We consider initial conditions of the form

x(r) = φ(r), r ∈ Z−

0 (5)

with the sequence {φ(r)}0r=−∞
bounded with respect to the norm

‖φ‖∞ = max
i=1,n


sup
r∈Z−

0

|φi(r)|


.

The qualitative analysis of neural dynamics plays an important
role in the design of practical neural networks. To solve problems
of optimization, neural control and signal processing, neural
networks have to be designed in such a way that, for a given
external input, they exhibit only one globally asymptotically stable
steady state. Referring to continuous-time neural networks with
distributed delays and impulses, this matter has been treated in
Huang, Luo, and Yang (2007), Huang, Wang, and Xia (2008), Kelin,
Zuoan, and Qiankun (2007), Li (2009); Li, Hua, and Fei (2009), Li
and Yang (2006), Li, Zhang, and Li (2009), Liu and Huang (2006),
Mohamad, Gopalsamy, and Akça (2008), Ping and Lu (2009),Wang,
Xiong, Zhou, Xiao, and Yu (2006), Xia, Huang, and Han (2008),
Yin and Li (2009) and Zhou (2009); Zhou and Li (2009). As for
discrete-time neural networks with impulses, we refer to (Akça,
Alassar, Covachev, & Covacheva, 2004; Akça, Alassar, Covachev,
& Yurtsever, 2007; Huo & Li, 2009; Song & Cao, 2008; Zhang &
Chen, 2008; Zhao, 2009; Zhou, Li, &Wan, 2009) and the references
therein.

On the other hand, if neural networks are used to analyze as-
sociative memories, the existence of several locally asymptotically
stable steady states is required (i.e. multistability), as they store in-
formation and constitute distributed and parallel neural memory
networks. Many research results on multistability of continuous-
time neural networks have been reported in Cao, Feng, and Wang
(2008), Cheng, Lin, and Shih (2006), Cheng, Lin, and Shih (2007),
Huang and Cao (2008a), Huang and Cao (2008b), Kaslik and Balint
(2006), Shih and Tseng (2008), Wang, Lu, and Chen (2009), Yi,
Tan, and Lee (2003) and Zhang, Yi, Yu, and Heng (2009). Mul-
tistability analysis is essentially different from mono-stability
analysis. In mono-stability analysis, the objective is to derive con-
ditions that guarantee that each network contains only one equi-
librium point, and all the trajectories of the network converge to
it. Whereas in multistability analysis, the networks are allowed to
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