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According to the cerebellar learning hypothesis, the inferior olive neurons, despite their low firing rates,
are thought to transmit high-fidelity error signals to the cerebellar cortex. “Chaotic resonance”, via moder-
ate electrical coupling between inferior olive neurons, has been proposed to realize efficient transmission
of the error signal by desynchronizing spiking. Here, we first show that chaotic resonance is a robust phe-
nomenon, as it does not depend upon the details of the inferior olive neuronal model. Second, we show
that chaotic resonance enhances learning of a neural controller for fast arm movements. Furthermore,
when both coupling and noise are considered simultaneously, we found that chaotic resonance widens
the range of noise intensity within which efficient learning can be realized. We suggest that, from an ener-
getic viewpoint, the spiking activity induced by chaos can be more economical than that induced by noise.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The anatomy and the physiology of the cerebellum make it
ideally suited to learn how to refine motor commands (Albus,
1971; Ito, 1970; Ito, Sakurai, & Tongroach, 1982; Kawato & Gomi,
1992; Marr, 1969; Schweighofer, Spoelstra, Arbib, & Kawato, 1998;
Shidara, Kawano, Gomi, & Kawato, 1993) or to learn sensory
predictions from motor commands (Miall, Christensen, Cain, &
Stanley, 2007; Miall, Weir, Wolpert, & Stein, 1993; Tseng, Diedrich-
sen, Krakauer, Shadmehr, & Bastian, 2007). The Purkinje cells, the
sole output neurons of the cerebellar cortex, receive two major
types of synaptic inputs: (i) numerous parallel fibers that relay in-
formation from much of the cerebral cortex and spinal cord, and
(ii) a single climbing fiber, which is an axon from an inferior
olive (I0) neuron, that has been shown to transmit error signals
(Gilbert & Thach, 1977; Kitazawa, Kimura, & Yin, 1998). When con-
jointly activated with parallel fibers, 10 spikes modify cerebellar
input-output transformations, in agreement with the known long-
term depression (LTD) at the parallel fiber-Purkinje cell synapse
(Ito et al., 1982).

Two apparently contradictory constraints must be met, how-
ever, for the cerebellum to realize efficient adaptive motor con-
trol or prediction. First, the IO must transmit error signals with
high temporal resolution despite its low firing rate. Second, 10
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neurons must fire at a low firing rate so that complex spikes en-
coding error signals do not interfere with simple spikes carrying
motor control commands or predictions (Kawato & Gomi, 1992;
Kobayashi et al., 1998). We previously proposed that these two
constraints are simultaneously met via low-rate 10 chaotic spike
firing (Schweighofer et al., 2004). Such chaotic behavior leads to
the generation of 10 spikes at different timings at each trial. Specif-
ically, we showed that electrical coupling via gap junctions can
provide the source of disorder that induced a “chaotic resonance”
(Nishimura, Katada, & Aihara, 2000) in 10 networks. Here, chaotic
dynamics is not supplied externally but it originates internally
from complex interaction among the neurons. This resonance leads
to an increase in information transmission in 10 neurons by dis-
tributing high-frequency components of the error inputs over the
sporadic, irregular, and non-phase-locked spikes. Desynchroniza-
tion is indeed necessary for scattering the spike timings of each
neuron to increase the time resolution of the population rate cod-
ing (Masuda & Aihara, 2002, 2003). Purkinje cells can then recon-
struct the complete error signal via spatio-temporal integration
because functionally related Purkinje cells and IO cells are grouped
in “microcomplexes” (Ito, 1990; Schweighofer, 1998).

The direct effect of electrical coupling in enhancing cerebellar
learning has yet to be shown, however. Furthermore, the robust-
ness of chaotic resonance is unclear for two reasons. First, chaos
does not always imply destruction of synchrony, since synchro-
nization between chaotic oscillators has been commonly observed
in a variety of physical or biological systems (Pikovsky, Rosenblum,
& Kurths, 2001). Second, in our original study, we used a rather
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complicated compartment model (Schweighofer, Doya, & Kawato,
1999), and many physiological parameters can be chosen rather
arbitrarily in this model. Finally, it is unclear whether chaos is in-
dispensable to desynchronize 10 neurons and to realize efficient
information transmission, since neural noise can also desynchro-
nize 10 neurons.

Here, we develop a simple model of I0 neurons to test the hy-
pothesis that chaotic spiking induced via electrical coupling in 10
neurons robustly enhances the learning of complex motor com-
mands compared to non-chaotic or noise-induced jittered spiking.
In our simulations, the 10 neurons provide error signals to an ide-
alized model of the cerebellar cortex that learns, via feedback er-
ror learning (Kawato, Furukawa, & Suzuki, 1987; Kawato & Gomi,
1992), to control a simplified model of the human arm in rapid
reaching movements.

2. Methods
2.1. Inferior olive model

The dynamical properties of the I0 neuron can be sum-
marized as follows. (i) Under an isolated condition, a single
I0 neuron generates a limit cycle oscillation (Manor, Rinzel,
Segev, & Yarom, 1997). (ii) Through gap-junction connections
with other neurons, the I0 neuron gives rise to more complex
spike patterns (Lang, Sugihara, & Llinas, 1996; Makarenko & Lli-
nas, 1998; Schweighofer et al., 2004). The w-model is a simpli-
fied two-dimensional neuronal model that satisfies these dyna-
mical characteristics (Fujii & Tsuda, 2004; Tsuda, Fujii, Tadokoro,
Yasuoka, & Yamaguti, 2004). In particular, when embedded in a
one-dimensional chain, complex spiking patterns such as chaotic
itinerancy can be generated (Tsuda et al., 2004). The dynamics of a
one-dimensional chain of ;-neurons is given by
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x; and y; represent the membrane potential and ion channel activ-
ity of the ith neuron (i = 1, 2, ..., N), N is the total number of the
neurons, 4 is a system parameter, 17 and 7, are time constants, g
is the coupling strength of the gap junctions, and I is an external
input. An advantage of using this model is its weak dependence on
the parameter value, since u is the only parameter that controls
the qualitative dynamics of the neuron; the time constants, which
are set equal in this study (n; = n,), do not change the qualita-
tive dynamics of the neuron. Furthermore, because the parameter
dependence on the neural dynamics has been thoroughly analyzed
(Fujii & Tsuda, 2004), the proper parameter value for u to generate
spiking dynamics is also well understood.

Real neurons are subject to various kinds of noise. Since noise
can destroy synchronous firing activity in a similar way as chaos,
it is natural to consider that noise can also enhance information
transfer in the 10. To take into account such a noise effect, we added
independent white Gaussian noise &;(t) to the original p-model,
with E[&(t)] = 0, E[&i(t)&;(s)] = 2D5(t —s)8(i —j), where D is the
noise intensity, as in Collins, Chow, and Imhoff (1995).

The spiking activity of the kth 10 neuron is defined as a
membrane potential that exceeds a threshold value of xg,. In the
case of noise-free simulations (D = 0), Eq. (1) is integrated by the
fourth-order Runge-Kutta algorithm started from a random initial
condition. In the presence of noise, Eq. (1) becomes a stochastic
differential equation, which is simulated by Euler’s algorithm (Fox,
Gatland, Roy, & Vemuri, 1988). In the following experiments, five

simulations were run to compute the average quantities so that
the dependence of the neural dynamics on the random initial
conditions is weakened.

2.2. Mutual information

As a basic study to evaluate the information transmission of the
10 network, we measured the mutual information (Rényi, 1970)
between an input signal and the spike responses. As an input signal,
we used chaotic signals from the Réssler equations (dx/dt = —y —
z,dy/dt = x 4+ 0.36y,dz/dt = 0.4x — (4.5 — x)z) (R&ssler,
1979). The y-variable is injected to all neurons in the same manner
asl = lp+ B -y(p = 0.01and B = 0.002). The output
S(t) represents a time sequence of a number of spikes generated
from the population of neurons within a time interval of 0.02.
Then the mutual information between input I(t) and output S(t)
is computed, where the signals are discretized into 25 bins for
calculating the probability distributions.

It is noted that the chaotic input signal has been utilized merely
as a typical example of complex signal in the brain. The same re-
sults can be obtained when a periodic or noisy signal is used as the
input.

2.3. Synchrony

For the I0 neurons with low firing frequency to transmit infor-
mation efficiently, synchronous activity is not desired, because in
this condition the network becomes equivalent to a single neuron.
As an index to detect such synchronized activity of the neurons,
the order parameter R (Kuramoto, 1984) has been utilized. The
order parameter is defined as Rexp(i®) = (1/N) Eszl exp(ig),
where ¢; represents phase of the jth neuron given by angle ¢; =
Xj(t—O,z)

Xj(t)
0 and 1, where a large value close to R = 1 implies strong mutual
synchronization and a small value close to R = 0 implies desyn-
chronization.

arctan ( ) The order parameter takes a real value between

2.4. Chaos

We quantified the strength of chaotic activity of the IO neurons
with the Lyapunov exponents, computed as in Shimada and
Nagashima (1979). From the Lyapunov exponents ordered in a
descending manner A; > A, > > An, the Lyapunov
dimension is defined as D; = k + Zle Ai/|Ak+1], where k is

the maximal value of j such that Zfi=] Ai > 0 (Kaplan & Yorke,
1970). The Lyapunov dimension represents an effective dimension
of the chaotic dynamics in the 2N-dimensional state space. A
larger Lyapunov dimension implies more complex dynamics of
10 neurons. In the scenario of chaotic resonance, the information
transmission is expected to be maximized in the regime where the
Lyapunov dimension takes the largest value.

2.5. Feedback error learning

The 10 neurons are supposed to provide error signals to
an idealized model of the cerebellar cortex. Here, we assume
that the cerebellum learns an inverse model of an arm via
feedback error learning (Kawato et al., 1987; Kawato & Gomi,
1992; Schweighofer et al., 1998; Shidara et al., 1993). In feedback
error learning, supervised learning of a feedforward controller
occurs using a feedback control signal as the error signal. As the
feedforward controller improves, the reliance on the feedback
controller decreases. Note that our purpose here is to show that
chaotic resonance of 10s with very low firing rates can enhance
the learning of complex mappings, such as an inverse model
for arm control; thus other complex mappings such as forward
models would have been possible as well. We therefore do not
model the cerebellum in great detail, but instead we model a
simple network composed of granule cells that project to Purkinje
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