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a b s t r a c t

In this paper, we propose a new local–global pattern classification scheme that combines supervised and
unsupervised approaches, taking advantage of both, local and global environments. We understand as
global methods the ones concerned with the aim of constructing a model for the whole problem space
using the totality of the available observations. Local methods focus into sub regions of the space, possibly
using an appropriately selected subset of the sample. In the proposed method, the sample is first divided
in local cells by using a Vector Quantization unsupervised algorithm, the LBG (Linde–Buzo–Gray). In a
second stage, the generated assemblage of much easier problems is locally solved with a scheme inspired
by Bayes’ rule. Four classificationmethodswere implemented for comparison purposeswith the proposed
scheme: Learning Vector Quantization (LVQ); Feedforward Neural Networks; Support Vector Machine
(SVM) and k-Nearest Neighbors. These four methods and the proposed scheme were implemented in
eleven datasets, two controlled experiments, plus nine public available datasets from the UCI repository.
The proposed method has shown a quite competitive performance when compared to these classical and
largely used classifiers. Ourmethod is simple concerning understanding and implementation and is based
on very intuitive concepts.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

A global approach to classification may be pursued by trying to
fit a probability density function, or a mixture of distributions, on
the observed data. If this density can be estimated, onemay end up
with amultimodal distribution, eachmode possibly corresponding
to a class, and after estimating the a priori class probabilities,
one could apply Bayes’ rule (Duda, Hart, & Stork, 2001) to solve
the problem in an optimal manner. Unfortunately, as it is well
known, for most of real applications it is in general quite hard, or
even impossible, to estimate a global probability density function,
especially for high dimensionality spaces (Duda et al., 2001;
Silverman, 1986). Furthermore, a pure global approach assumes
that data is engendered by a phenomenon governed by a global
fundamental law and does not take advantage of possible local
generative structures. Accordingly, global models are constructed
from all the available observations aiming to represent the entire
problem space.
In a local classification approach, the aim is instead of construct-

ing a global generative model from all observations, to build up
local classification schemes, possibly using just a subset of the
sample. The focus moves into partitions of the original problem.
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Successful examples of local–global classification approaches
are the kernel methods (Shawe-Taylor & Cristianini, 2004), for
instance the Support Vector Machine (SVM) procedure (Vapnik,
1998). In SVM, a subset of the observations, the Support Vectors,
is employed to determine a somehow optimal separating hyper-
plane. The local structure arises intrinsically through the kernels;
the global framework comes by means of the generated hyper-
planes. In Huang, Yang, King, and Lyu (2008), a local–global large
margin classifier is proposed. A time series local–global approach
can be found in Fariñas, Pedreira, and Medeiros (2004).
A different view comes from Vector Quantization (VQ) (Linde,

Buzo, & Gray, 1980; Gray & Neuhoff, 1998) where the key idea is
to use the whole sample (global) in an unsupervised environment
to generate a partition that may enhance local structures. This re-
sults in a quantized approximation of the distribution, using a finite
number of prototype vectors. In a supervised context, VQ can be
naturally extended to Learning Vector Quantization (LVQ) (Koho-
nen, 2001), where prototypes location results from an update pro-
cedure based on the training dataset. Once the prototypes are set,
one may associate one or more of those with each class, and clas-
sify an observation by using the nearest-neighbor rule (Duda et al.,
2001). Some procedures were proposed to execute LVQ with an
appropriately chosen subset of the sample (Pedreira, 2006; Peres
& Pedreira, 2009).
Applications of local–global models may be found in diverse

areas such as bioinformatics (Kasabov, 2007) or remote sensing
imaging (Blanzieri & Melgani, 2008). Here, we propose a new
local–global classification scheme that combines supervised and
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unsupervised approaches. We use a VQ unsupervised algorithm to
divide the sample in local cells. In this first stage, the whole sam-
ple is used and some information on the data distribution is cap-
tured in a global mode. In this way, an assemblage of much easier
problems is generated and locally solved, in a second stage, with a
scheme inspired by Bayes’ rule.

2. Methodology and datasets

The proposed approach belongs to the divide-and-conquer
family. We create a set of sub-classifiers, applied in sub regions of
the space, intending to make the classification task easier in a local
level.
Let X be a sample of size m comprised by a set of observations

{x1, x2, . . . , xm; xi ∈ <
n,∀i = 1, . . . ,m}. Let us consider a

dichotomous classification environment where each observation
xi is associated to one, out of two, possible classes, C1 or C2. We
denote y(xi) the label of observation xi, being y(xi) = 1 if xi belongs
to C1, and y(xi) = 2 if xi belongs to C2.
The proposed methodology is implemented in two stages. We

first partition the observation space into cells using an unsuper-
vised procedure. In a second stage, a supervised classification
scheme is applied (locally) in eachof thepreviously generated cells.
The first stage is done by the way of the LBG (Linde-Buzo-Gray)

algorithm (Linde et al., 1980). Other algorithms, like for instance
the k-means, may produce similar results. The LBG algorithm is an
iterative procedure that alternatively conducts two actions, update
and partition. It is started by setting the centroid of the sample
as the code-vector in the initial iteration. It follows (partition) by
adding (and subtracting) a perturbation and consequently splitting
this code-vector into two. At each iteration, after completing the
partition process, the update operation is done by redefining the
cells, allocating each observation to its correspondent closest code-
vector (in the sense ofminimumsquared Euclideandistortion), and
updating the current code-vectors to the centroids of its associated
observations. This process continues until a pre-established
number of cells, let’s say r , is reached. In this way, one ends upwith
r code-vectors {pk ∈ <n, k = 1, . . . , r} defining r cells S1, . . . , Sr .
The second stage consists of applying a classification procedure

for each of the generated cells. A trivial situation occurswhen a cell
is homogeneous, i.e. all (training) observations in this cell belong
to the same class. In this case, any testing observations attracted to
this cell will be associated to the cell label. Otherwise, if the cell is
heterogeneous, we introduce a local scheme inspired by the Bayes
classifier (Duda et al., 2001).
Without loss of generality, we focus on an arbitrary testing

observation x in cell Sk. Let us consider the two subsets ς1k and ς
2
k

of Sk containing observations of classes C1 and C2 respectively:
ς1k ≡ {xi ∈ Sk|y(xi) = 1} and ς

2
k ≡ {xi ∈ Sk|y(xi) = 2}.

The relative frequencies f 1k and f
2
k of classes C1 and C2 may now be

calculated as

f 1k =
#ς1k
#Sk

and f 2k =
#ς2k
#Sk

,

where # represents cardinality. Note that frequencies f 1k and f
2
k are

estimators of the a priori probability of classes C1 and C2 in cell Sk.
The a priori probability ratio in Sk may now be estimated as:

πk ≡
f 1k
f 2k
.

We may next view the inverse of the distances of an observa-
tion x to the class means, as estimatives of the likelihood at x. So,
we define

L̂x ≡
(
d(x ,m1k)

)−1
/
(
d(x ,m2k)

)−1
(1)

as an estimative for the likelihood ratio L ≡ p(x|C1)/p(x|C2), where
m1k and m

2
k are respectively the means of the observations with

labels 1 and 2 in cell Sk.

We conclude by proposing the following decision rule for a
testing observation x in cell k:{
x→ C1 if L̂x ≥ (πk)−1

x→ C2 otherwise.
(2)

The proposed algorithm may be summarized as follows:

1. Segment the (training) sample space into r cells S1, . . . , Sr by
using the LBG algorithm.

2. Calculate the frequency ratio π and the class meansm1 andm2
for all heterogeneous cells.

3. If an observation (in the testing set) lies in a homogeneous cell,
attribute to this observation the label of this cell.

4. Otherwise, if observation x (in the testing set) lies in a
heterogeneous cell, calculate L̂x (as defined in (1)) and attribute
a class in accordance with rule (2).

Four classification methods were implemented for compari-
son purposes with the proposed scheme: (i) LVQ; (ii) Feedforward
Neural Networks (NN), (iii) Support Vector Machine (SVM) and
(iv) k-Nearest Neighbors. The NNswere trainedwith Bayesian Reg-
ularization, with 10 initial neurons in the hidden layer and logistic
activation function in both, the hidden and the output layers. For
SVM we used radial basis function kernel.

2.1. On the datasets

In this sub-section, we briefly describe the datasets used to
benchmark the proposed method performance. Besides the pro-
posed algorithm, the four classification procedures, described in
the previous sub-section, were implemented in eleven datasets,
two controlled experiments, plus nine public available datasets
from the UCI1 repository, namely: Waveform, Letter-B, Statlog,
Heart Diseases Diagnosis, Breast Cancer, Ionosphere, Pima Indians,
Glass and Lung Cancer.
Experiments 1 and 2 are synthetic data. Experiment 1 consists

of two classes divided by a cosine function. We generated 1030
observations of class C1 and 1027 observations of class C2 for in-
sample, and 1060 observations labeled C1 and 1041 observations
labeled C2 for out-of-sample. For experiment 2 two classes were
generated through a circle and a roll with coincident centers (with-
out superposition). In-sample: 123 observations of class C1 and
2611 observations of class C2. Out-of-sample: 127 observations of
class C1 and 2646 observations of class C2.
The original dataset for experiment 3 had 3 classes of wave-

forms; here, we tested class 1 against the other two. This dataset is
composed of 5000 observations, with 40 input features (3000 used
for in-sample and 2000 for the out-of-sample phase).
Experiment 4 concerns letter recognition. The objective is to

identify the 26 capital letters in the English alphabet. We set letter
B as one class against the other 25 letters. The dataset consists of
20000 observations with 16 input features, 10 600 of those used
for in-sample and 9400 for out-of-sample testing.
The data for experiment 5 comes from the Statlog - landsat

satellite. This dataset consists of the multi-spectral values of pixels
in 3× 3 neighbourhoods in a satellite image. The aim is to classify
images, associated with the central pixel in each neighbourhood,
given the multi-spectral values. We tested class 1 against the
others. There are 6435 observations with 36 input features, 4435
were used for in-sample phase leaving 2000 for the out-of-sample
testing.
The dataset for experiment 6, related to the diagnosis of coro-

nary artery disease, was formed by an assemblage of four data sets
as in Pedreira, Macrini, and Costa (2005). Each of these four data

1 http://www.ics.uci.edu/~mlearn/MLSummary.html.
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