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modern neuroscience in order to infer how cell assemblies communicate. In spite of the large diffusion
of micro-electrode-array-based systems, researchers usually find it difficult to manage the huge quantity
of data routinely recorded during the experimental sessions. In fact, many of the available open-source
toolboxes still lack two fundamental requirements for treating multi-channel recordings: (i) a rich
repertoire of algorithms for extracting information both at a single channel and at the whole network
level; (ii) the capability of autonomously repeating the same set of computational operations to ‘multiple’
recording streams (also from different experiments) and without a manual intervention. The software
package we are proposing, named SPYCODE, was mainly developed to respond to the above constraints

and generally to offer the scientific community a ‘smart’ tool for multi-channel data processing.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The brain is undoubtedly the most fascinating but still myste-
rious machine of the known universe. The Nobel laureate Santi-
ago Ramon Y. Cajal used to say that ‘the brain is a world consisting
of a number of unexplored continents and great stretches of un-
known territory’. After more than one hundred years, his sentence
remains true but the progress in technological research makes
modern neuroscientists optimistic about the possibility to open an
access towards those ‘unexplored’ territories. Among others, re-
cent advancements in micro-fabrication technologies enabled the
introduction of devices for multi-channel recordings (i.e. Micro-
Electrode Arrays, MEAs), giving the capability of investigating neu-
ral interdependency and computational properties of dynamically
interacting cell assemblies (Hebb, 1949; Miller & Wilson, 2008;
Quiroga & Panzeri, 2009).

Thanks to the pioneering work by Gross (Gross, Azzazy, Wu,
& Rhodes, 1995; Gross, Rhoades, & Jordan, 1992; Gross, Rieske,
Kreutzberg, & Meyer, 1977), who first demonstrated the possibility
to use neuronal cultures coupled to MEAs as a cell-based biosensor,
MEA-based devices are now a well-accepted electrophysiological
technique for both in vivo (Blanche, Spacek, Hetke, & Swindale,
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2005; Buzsaki, 2004) and in vitro (Egert, Heck, & Aertsen, 2002;
Minerbi et al.,, 2009; Schneidman, Berry, Segev, & Bialek, 2006)
measurements. Tens of micro-electrodes permanently in contact
with electrogenic cells allow monitoring the electrophysiological
activity of a cell population (i.e., multi-units recordings) for long
periods of time (Bologna et al., 2010; Chiappalone, Bove, Vato,
Tedesco, & Martinoia, 2006; Wagenaar, Pine, & Potter, 2006). Such
a system represents a perfect candidate to routinely record and
evaluate the patterns of spontaneous as well as stimulated network
behavior (Bakkum, Chao, & Potter, 2008; Chiappalone, Massobrio,
& Martinoia, 2008; Marom & Shahaf, 2002).

MEA-based systems are currently available on the market
(Multi Channel Systems, Reutlingen, Germany; Panasonic, Osaka,
Japan; Ayanda Biosystems, Lausanne, Switzerland; Plexon, Dallas
TX, USA; Axion Biosystems, Atlanta, GA, USA) and find applications
in many research fields, such as neuroscience, pharmacology, car-
diac electrophysiology, neurorobotics and bidirectional brain ma-
chine interfaces (Nicolelis, 2003). Notwithstanding the widespread
use of this technique, there is still a lack of efficient software to
manage a large amount of electrophysiological data produced by
such multi-site recordings (Nicolelis, 2001; Potter, 2001). Espe-
cially in the case of neuropharmacological experiments, tens of
gigabytes of data are daily produced in order to characterize the
response to specific drugs or to test the effects of unknown ones
(Gramowski et al., 2006; Gramowski, Jugelt, Weiss, & Gross, 2004).

Among the general-purpose commercially available process-
ing tools, often sold together with the acquisition system (e.g.
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MC_Rack by Multi Channel Systems, NeuroExplorer and Offline
Sorter by Plexon, Conductor and Mobius by Alphamed), there are
still no automated tools suitable to manage and support such a
large amount of data and with the possibility to easily extend
their functionalities. In other terms, no chance is given to the
user to operate, speedily, a multi-channel analysis on more than
one recorded stream at a time. Additionally, commercial software
tends to have only limited possibilities to incorporate new tools
or modify existing ones. For these reasons, new software tools for
massive data management and signal processing have to be de-
veloped. Recently a number of scientists have started developing
custom-made tools capable to analyze multi-electrode recorded
data, such as Mea Tools (Egert, Knott et al., 2002), MeaBench (Wa-
genaar, DeMarse, & Potter, 2005), FIND (Meier, Egert, Aertsen, &
Nawrot, 2008), BSMART (Cui, Xu, Bressler, Ding, & Liang, 2008).
Unfortunately the cited tools do not provide the users with a large
number of algorithms for data analysis and they are not able to
manage massive quantities of data at a time. These are the main
motivations that induced us to develop a new and innovative soft-
ware package, named SPYCODE which aims at overcoming such
limitations. SPYCODE provides a working environment able to per-
form efficient data management and processing since it incor-
porates a very rich repertoire of standard and advanced signal
analysis tools. Furthermore, it includes the novel analyses pub-
lished by our group in recent years (Chiappalone, Vato, Berdon-
dini, Koudelka-Hep, & Martinoia, 2007; Garofalo, Nieus, Massobrio,
& Martinoia, 2009; Maccione et al., 2009; Pasquale, Martinoia, &
Chiappalone, 2009; Pasquale, Massobrio, Bologna, Chiappalone, &
Martinoia, 2008). A few examples of “unconventional” analysis are
given by information theory methods, extraction of connectivity
maps, self-adapting burst and network burst detection. In the fol-
lowing, we will present the functionalities of our software and an
example of application to data recorded from cortical cultures dur-
ing a neuropharmacological study.

2. Methods

In this section we present a concise review of the theoretical
background of the signal processing algorithms implemented in
SPYCODE.

2.1. Spike analysis

2.1.1. Spike detection

Spike timing is the first information to extract from raw data.
Since typical signal to noise ratios are much larger than one, the
most used method to identify the spikes is a threshold-based
algorithm (Maeda, Robinson, & Kawana, 1995) resulting in a point
process (e.g. spike train, ST) in which each element represents the
position in time of a spike.

N

ST(t) =Y 8(t —t). (1)
s=1

Eq. (1) reports the formal definition of a spike train, where t; is the

timing of a spike, N is the number of recognized spikes and §(t) is

the Kronecker delta function.

After obtaining the spike trains and before proceeding with
further analysis, it is important to take into consideration the is-
sue of stationarity, which plays a central role when dealing with
neuronal signals. Indeed, experiments performed through non-
implantable MEAs (either involving slices or dissociated cultures)
generally do not present the non-stationarity typical of in vivo
experiments, neither when spontaneous activity is recorded nor
stimulation protocols are applied. Hence, the main assumption
upon which SPYCODE is based and so data analyzed is the station-
arity of recorded neuronal signals, at least for specific time inter-
vals. Furthermore, the possibility to split or join recordings into

chunks of desired time length (cf. Section 3.1.1) and the fine tuning
of analysis parameters can help detecting possible non-stationary
“anomalous” activity periods (e.g. occurring after moving MEAs de-
vices (Wagenaar et al., 2006)) and discard them from the analysis.
In order to perform the latter selection, and depending on individ-
ual user’s needs, also additional Matlab toolbox explicitly dealing
with stationarity analysis (e.g. GARCH toolbox, the Mathworks) can
be used.

2.1.2. Firing rate

Once spikes have been identified, the easiest and most direct
way to characterize the level of activity of a cell is computing its
Firing Rate (FR). According to Adrian’s definition (Adrian, 1928),
the firing rate is the number of spikes in a rather large time window
and it can be measured from just one representation of the neural
activity, as follows (Eq. (2)):

Y
IN (Z 8(t — ts)> dt
s=1
FR = T = (2)
with T representing the duration of the recording and N the num-
ber of spikes occurring at time ;. If we count the spikes in a small
window of size At, centered at (t, — t,)/2 and we divide by the
bin width, we compute the Instantaneous Firing Rate (IFR) (Rieke,
Warland, de Ruyter van Steveninck, & Bialek, 1997).

Dealing with MEAs, tens of channels are likely to be involved
during an experimental session. For this reason, it is useful to com-
pute the FR or the IFR of the whole culture and see how it changes
given the delivered stimulation. These quantities are simply ob-
tained by computing the FR and the IFR of each single channel and
then averaging among all the active electrodes of the MEA, obtain-
ing the Mean Firing Rate (MFR) and the Average Firing Rate (AFR)
of the network.

2.1.3. Inter-spike interval histogram

The ISI distribution is the probability density of time intervals
between consecutive spikes and it is a useful statistics for describ-
ing spike trains (Dayan & Abbott, 2001). The formula to calculate
the ISI histogram is reported below (Tam & Gross, 1994):

N—1
ISI(T) = ) 8t — £ — 1) (3)
s=1

where 7 represents the ISI. As reported by the literature (Perkel,
Gerstein, & Moore, 1967), for finite samples of data, such as the
observed neuronal spike trains, the ISI histogram (ISIH) serve as
an estimator of the actual probability density function. Different
shapes of the ISIH give an estimate about the synchronization of the
neural network, and each shape denotes a set of timing with shared
properties. For this reason, the ISIH can provide a detailed way to
classify the dynamic pattern of neurons, e.g. ‘spiking’ or ‘bursting’,
since bursting neurons usually display “bimodal” ISI histograms
(Cocater-Zilgien & Delcomyn, 1992; Tateno, Kawana, & Jimbo,
2002). However, it has been recently demonstrated (Selinger,
Kulagina, O’Shaughnessy, Ma, & Pancrazio, 2007) that plotting
histograms of logarithmic ISI instead of linear ISI can be useful in
better discriminating between intra-burst and inter-burst intervals
(Pasquale et al., 2009). For the above reason, the possibility to
compute and plot logISIH has been implemented within SPYCODE.

2.2. Burst analysis

2.2.1. Burst detection

Highly non-uniform spike timing, or spontaneous bursting, is
observed in a wide range of in vitro neuronal preparations and de-
veloping organisms (Ben-Ari, 2001). Non-uniformity is present at
different time scales (Corner, 2008; Wagenaar et al., 2006) and as
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