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Synchronization is an important mechanism that helps in understanding information processing in
a normal or abnormal brain. In this paper, we propose a new method to estimate the genuine and
random synchronization indexes in multivariate neural series, denoted as GSI (genuine synchronization
index) and RSI (random synchronization index), by means of a correlation matrix analysis and surrogate
technique. The performance of the method is evaluated by using a multi-channel neural mass model
(MNMM), including the effects of different coupling coefficients, signal to noise ratios (SNRs) and time-
window widths on the estimation of the GSI and RSIL Results show that the GSI and the RSI are
superior in description of the synchronization in multivariate neural series compared to the S-estimator.
Furthermore, the proposed method is applied to analyze a 21-channel scalp electroencephalographic
recording of a 35 year-old male who suffers from mesial temporal lobe epilepsy. The GSI and the RSI at
different frequency bands during the epileptic seizure are estimated. The present results could be helpful
for us to understand the synchronization mechanism of epileptic seizures.
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1. Introduction

In neurological studies, synchronization is recognized as a
key feature to indicate the information process in a normal or
abnormal brain (e.g. Buzsaki, 2004; Buzsaki & Draguhn, 2004; Fell
et al,, 2001; Varela, Lachaux, Rodriguez, & Martinerie, 2001). The
estimated synchronization of the experimental and clinical data,
for instance multivariate neural signals, become the signatures
of brain pathologies, or brain functions, or the early diagnosis
and monitoring of brain disorder. (Aarabi, Wallois, & Grebe, 2008;
Carmeli, Knyazeva, Innocenti, & De Feo, 2005; Darvas, Ojemann,
& Sorensen, 2009; Knyazeva et al., 2008; Rudrauf et al., 2005;
Stam, Jones, Nolte, Breakspear, & Scheltens, 2007). In order to
investigate synchronization in the brain, multiple electrodes are
often used to record the neural signals in different areas of the brain
simultaneously. Therefore, how to estimate the synchronization
index of multivariate neural signals has become a crucial issue in
neural signal processing.

Some methods have been developed to estimate the synchro-
nization index (or correlation coefficient) between two neural
series, for instance cross-correlation, spectrum-based coherence,
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synchronization likelihood, mutual information, nonlinear inter-
dependence, phase synchronization, correntropy coefficient, event
synchronization, and so on (Arnhold, Lehnertz, Grassberger, & El-
ger, 1999; Brown & Kocarev, 2000; Bruns, 2004; Carter, 1987;
Lachaux, Rodriguez, Martinerie, & Varela, 1999; Le Van Quyen et al.,
2005; Quian Quiroga, Kraskov, Kreuz, & Grassberger, 2002; Quian
Quiroga, Kreuz, & Grassberger, 2002; Stam & van Dijk, 2002; Xu,
Bakardjian, Cichocki, & Principe, 2008). To analyze multivariate
neural series, we may repetitively use bivariate measure methods
to obtain the synchronization index among neural series. How-
ever, how to obtain a golden synchronization index in multivari-
ate neural signals is still a bottleneck problem (Allefeld & Kurths,
2004; Pereda, Quian Quiroga, & Bhattacharya, 2005). Recently,
an S-estimator has been developed to estimate the synchroniza-
tion in multi-channel EEG series (Carmeli et al., 2005). In this
method, the quantified synchronization is inversely proportional
to the embedding dimension of the dynamical system, and is inde-
pendent of the total power and the time dimension of the neural
signals. The disadvantage of the S-estimator is that the estimated
synchronization index includes random and/or artifact compo-
nents, because the synchronization is often estimated over finite-
length data, so the estimated synchronization includes, to some
extent, random and/or artifact information (Miiller, Baier, Rummel,
& Schindler, 2008; Plerou et al., 2002). In a recent study, a con-
cept of genuine synchronization was proposed for the first time by
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Miiller et al. (2008) to remove the random (and/or artifact) com-
ponents in multivariate neural signals. In this method, the genuine
cross-correlation strength (TCS) was estimated by means of the
significant deviation of the eigenvalues (or partial eigenvalues) of
the linear zero-lag cross-correlation matrix. However, all of eigen-
values contain rich information (Kwapien, Drozdz, & Oswie¢imka,
2006), so this information should be used.

In this paper, we propose a method to estimate the GSI and
the RSI in multivariate neural signals. To test the performance of
the method, a multi-channel neural mass model (MNMM) (Cui,
Li, & Gu, 2009) is applied to generate multivariate neural signals.
The effects of different coupling coefficients, signal to noise ratios
(SNRs) and time-window widths on the method are investigated.
Application of the method to the multivariate long-term EEG
recording of a 35 year-old male suffering from mesial temporal
lobe epilepsy is demonstrated as well.

2. Methods
2.1. Correlation matrix analysis

Equal-time correlation is a simple method to measure the syn-
chronization between two series. Consider multivariate neuronal
dataZ = {zz(n)},i = 1,...,M,n = 1,...,T, where M is the
channel number and n is the number of data points in time win-
dow T. To provide the same scale for all the neuronal population
activities, the normalized data X = {x; (n)} are first calculated by
x; (n) = (z; (n) — (Z;)) /oi, where (Z;) and o; are the mean and stan-
dard deviation of z; (n), respectively. Then the equal-time correla-
tion matrix can be constructed as
C 1XX/ 1

7% (1)
where the superscript denotes transposition. It is noted that we
can also select other correlation methods to construct the correla-
tion matrix C, such as phase synchronization, synchronization like-
lihood, mutual information, nonlinear interdependency and event
synchronization. The selection of the method depends on the na-
ture of the data being analyzed.

The eigenvalue decomposition of C is

Cv; = Av;, (2)

where eigenvalues Ay < A, <.-- < Ay are in increasing order
and v;,i = 1,...,M are the corresponding eigenvectors. As C
is a real symmetric matrix, all eigenvalues are real numbers, and
the trace of C is equal to the number of series M. When all the
time series are correlated perfectly, the entries of matrix C are
all equal to 1. The maximum eigenvalue is M and the others are
zeros. However, in practice, even though all the time series are
uncorrelated completely, the computed correlation coefficients are
not zeros due to the effect of the length of the data, and they
follow a bell-shaped distribution (i.e. they are random correlations
or artifact information). More universal properties of random
matrices can be found in (Allefeld, Miiller, & Kurths, 2007; Miiller
& Baier, 2005; Plerou et al., 2002; Seba, 2003; Wilcox & Gebbie,
2007).

2.2. Surrogate

When the multivariate time series are derived from an
independent linear stochastic process, the ideal correlations
between time series are zeros. Unfortunately, due to the effect
of the algorithm and the length of the data, the calculated
correlations exhibit a little bias, and are not purely zero. In this
paper, a surrogate method is used to reduce the ‘bias’ (i.e. random
correlations or artifact information) in practical time series. The

surrogate method proposed by Andrzejak, Kraskov, Stdgbauer,
Mormann, and Kreuz (2003) is employed, which iteratively
permutes the original sample values of each series. Details can be
found in the Appendix. The randomized multivariate data have the
same size (channel number M and the number of data points n in
time window T) and in particular the same power spectrum of each
time series as its original time series. Based on the surrogate series,
the equal-time surrogate correlation matrix R can be calculated:
A< A < - < Ay, are denoted as the eigenvalues of
surrogate matrix R. The distribution of the surrogate eigenvalues
A can reflect the random synchronization of the multivariate time
series.

2.3. GSI and RSI estimator

The S-estimator has been proposed to assess synchronization
in multivariate EEG series by means of the distributions of the
eigenvalues of the covariance matrix (Carmeli et al., 2005). The
normalized eigenvalues Afl) of the covariance matrix are defined
as follows:

Ai )
—, i=1,...,M. (3)

For a random multivariate time series, the minimum and
maximum eigenvalues of the random correlation matrix are

1+ 5 +2/5Q = T/M. That is to say,

although all the multivariate time series are not correlated, the
eigenvalues range in the bound [Amin, Amax] (Plerou et al., 2002;
Seba, 2003). The calculated S-estimator is a non-zero value for
random multiviate time series (Miiller et al., 2008; Plerou et al.,
2002). The S-estimator (total synchronization) is composed of
genuine and random synchronizations. To reduce the effects of the
random components in the total synchronization, the eigenvalues
are divided by the averaged surrogate eigenvalues; that is,

= MR

T
> hi/A
i=1

)\min.max =

i=1,...,M, (4)

where )_\f is the average eigenvalues of the surrogate series over the
SN realizations.

In a similar manner, the normalized surrogate eigenvalues are
obtained as follows:

N
S i=1,...,M. (5)
A

AP =

ME >

i=1
All the synchronization indexes can be summarized as follows:

M
> 29 log (Afk))
k) __ i=1

SI 1+ os 0D ,
When k = 1 (Eq. (3)), this is an S-estimator, which is a measure of
the total amount of synchronization (Carmeli et al., 2005); when
k = 2 (Eq. (4)), the eigenvalues of Afz) are applied, and the
genuine synchronization index (GSI) is obtained. To understand
how this measure works, two cases should be considered. If
genuine correlation does not exist, the normalized eigenvalues )LEZ)
are all equal to 1/M, so SI® = 0; on the other hand, if all the time
series are correlated perfectly, the largest eigenvalue Ay, = M, and
the others are equal to zero, i.e. the largest normalized eigenvalue
is A = 1, and the others are zero, so SI® = 1. The random
synchronization index (RSI) can be obtained when k = 3 (Eq. (5)).

k=1,2,3. (6)
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