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In order for patients with disabilities to control assistive devices with their own neural activity,
multineuronal spike trains must be efficiently decoded because only limited computational resources can
be used to generate prosthetic control signals in portable real-time applications. In this study, we compare
the abilities of two vectorizing procedures (multineuronal and time-segmental) to extract information
from spike trains during the same total neuron-seconds. In the multineuronal vectorizing procedure,
we defined a response vector whose components represented the spike counts of one to five neurons.
In the time-segmental vectorizing procedure, a response vector consisted of components representing
a neuron’s spike counts for one to five time-segment(s) of a response period of 1 s. Spike trains were
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Decoding recorded from neurons in the inferior temporal cortex of monkeys presented with visual stimuli. We
Single-unit recording examined whether the amount of information of the visual stimuli carried by these neurons differed
Vision between the two vectorizing procedures. The amount of information calculated with the multineuronal
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vectorizing procedure, but not the time-segmental vectorizing procedure, significantly increased with the
dimensions of the response vector. We conclude that the multineuronal vectorizing procedure is superior
to the time-segmental vectorizing procedure in efficiently extracting information from neuronal signals.
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neural interface/prosthesis technology could provide valuable
therapeutic measures.

1. Introduction

Neural interface/prosthesis technology may enable amputees
to voluntarily control their artificial limbs with neuronal activities
and allow individuals who have sustained spinal cord injuries
to remotely control assistive devices. It was recently demon-
strated that electronic devices can be controlled using neuronal
activities recorded from animals (Chapin, Moxon, Markowitz,
& Nicolelis, 1999; Paninski, Shoham, Fellows, Hatsopoulos, &
Donoghue, 2004; Schwartz, Taylor, & Tillery, 2001; Serruya, Hat-
sopoulos, Fellows, Paninski, & Donoghue, 2003; Wessberg et al.,
2000) and tetraplegic patients (Donoghue, Nurmikko, Black, &
Hochberg, 2007; Hochberg et al., 2006). These promising results
obtained under laboratory conditions raise the possibility that
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Control signals for prosthetic devices are usually derived from
the neuronal activities of motor-related cortices, but signals
from other cortices may also be used. For example, Felton,
Wilson, Williams, and Garell (2007) recently demonstrated that a
prosthetic device can be controlled using neural activity induced
in the human temporal lobe by thinking about tones. Indeed,
the results suggest that neuronal activities in any cortex can be
used to create control signals for prosthetic devices. An important
caveat, however, is the reproducibility of the neuronal activities
that represent a specific motor, perceptual, or cognitive event.

This reproducibility parameter of neuronal activities can be
evaluated using information theory. The amount of information
shared by neuronal activities and the corresponding event is often
used as a measure of the reproducibility of neuronal activities
for a particular event because shared information depends on the
probability that the neuronal activities and the event coincide
(Cover & Thomas, 1991). When various signal processing methods
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are compared, the methods that extract more information from the
neuronal activities are generally considered superior.

The application of information theory to neuronal signals has
shown that both the vectorization of spike counts across multiple
neurons (multineuronal vectorization) and the vectorization of
spike counts over a time period of a single neuron (time-segmental
vectorization) can increase the amount of information extracted
from spike trains (Aggelopoulos, Franco, & Rolls, 2005; Gochin,
Colombo, Dorfman, Gerstein, & Gross, 1994; Kaneko, Tamura,
Kawashima, Suzuki, & Fujita, 2007; Optican & Richmond, 1987;
Reich, Mechler, & Victor, 2001a; Richmond & Optican, 1987;
Rolls, Franco, Aggelopoulos, & Reece, 2003; Tovee, Rolls, Treves,
& Bellis, 1993). Studies using simultaneously recorded responses
from multiple neurons have indicated that a large amount of
information can be obtained using the multineuronal vectorizing
procedure (Aggelopoulos et al., 2005; Gochin et al., 1994; Kaneko,
Tamura, Kawashima et al., 2007; Reich et al, 2001a; Rolls
et al., 2003). Time-segmental vectorization was also shown to be
efficient for extracting more information (Optican & Richmond,
1987; Richmond & Optican, 1987; Tovee et al., 1993). The adoption
of both vectorizing procedures, however, prohibitively increases
the dimensions of the response vector and may exceed the limited
capacity of the data processing resources. This issue is critical for
information theoretical approaches to real-time signal processing
and the control of portable prosthetic devices.

In the present study, we compared these two vectorizing
procedures based on their ability to efficiently extract information
from extracellular spike activities from a population of neurons.
For this comparison, we obtained multineuronal data from
the inferior temporal (IT) cortex of monkeys with a multisite
microelectrode while they were presented with a set of visual
stimuli. The IT is an association area that is crucial for visual
object recognition (D’Esposito et al, 1997; Miyashita, 1988;
Roland & Gulyas, 1994, 1995). In our multineuronal vectorizing
procedure, we defined a response vector whose components
represented the spike counts of multiple neurons. In the time-
segmental vectorizing procedure, a response vector consisted of
components representing a neuron’s spike counts for one to five
time-segment(s) of the whole response period (1 s). To fairly
compare these vectorizing procedures, the total neuron-seconds
of the analyzed data was fixed at 1 neuron-second. We then
determined which of these two strategies enabled us to obtain
more information with the same number of vector dimensions.

2. Methods
2.1. Recording multiple neuronal activities

Neuronal responses to 64 visual stimuli were recorded from
the IT of four anesthetized monkeys (Macaca fuscata; body weight:
5.2-7.5 kg; see Tamura, Kaneko, Kawasaki, and Fujita (2004) for
details). All experimental procedures were based on guidelines
from the National Institutes of Health of the United States (1996).
Furthermore, the Osaka University animal experiment committee
approved the procedures.

The general experimental procedures were similar to those
described previously (Tamura et al., 2004). The monkeys were
prepared for repeated recording by undergoing initial aseptic
surgery under sodium pentobarbital anesthesia. For recording
experiments, the monkeys were anesthetized with isoflurane.
Vital signs (i.e., heart rate, body temperature, end-tidal CO,,
and arterial oxygen saturation level) were monitored throughout
the experiments. The monkeys’ eyes were covered with contact
lenses. For multichannel recording of neuronal activity, a seven-
core electrode (seven recording sites, impedance of each site:
1-2 M&2 at 1 kHz; Heptode, UWE Thomas Recording, Germany)

was inserted into the IT through a craniotomy. To ensure stable
recordings, we immobilized the brain surface with paraffin. After
placing an electrode at each recording position we waited at
least 20 min before the data acquisition was started. To prevent
eye movement, the monkeys were paralyzed with pancuronium
bromide.

Because the sampling radius of the seven-core electrode is
approximately 150 pm, multichannel recordings were made at
300 wm intervals to avoid sampling the same neuron twice. The
neuronal activity from each recording site was amplified 10,000
times, band-pass filtered (500 Hz to 3 kHz), and digitized at 20 kHz
for offline spike sorting and analysis.

Multiple single-unit recording of nearby neurons was achieved
by applying spike sorting to the multichannel recording data
(Kaneko, Suzuki, Okada, & Akamatsu, 1999; Kaneko, Tamura, &
Suzuki, 2007; McNaughton, O’Keefe, & Barnes, 1983). We em-
ployed a custom-made spike sorter consisting of three procedures:
spike detection, burst detection, and spike classification (Kaneko
etal., 1999; Kaneko, Tamura, & Suzuki, 2007). Multineuronal spikes
were detected by matching the observed waveforms with a set of
spike templates with different durations (spike detection). For each
neuron spike, six waveforms were recorded simultaneously at six
recording sites (i.e., the tip and five lateral sites of the seven-core
electrode; one recording site was not used for technical reasons).
The amplitudes of these waveforms constituted a spike-amplitude
vector. A burst of spikes was identified based on short inter-spike
intervals (1.5-15 ms) with an allowance for small amplitude ra-
tio variations (burst detection). The amplitude vector of the first
intraburst spike was used for spike clustering. Finally, clusters of
spike-amplitude vectors were classified by bottom-up hierarchical
clustering (spike classification).

2.2. Visual stimulation

We used 64 visual stimuli (see Fig. 1B in Tamura et al. (2004)),
including 53 two-dimensional geometric shapes (e.g., circles,
squares, triangles, bars, stars, gradation patterns, and gratings)
and 11 photographs of natural objects (e.g., banana, apple, human
face, monkey face, and hand). During each of the 10 presentation
sessions, each of the 64 visual stimuli was presented for 1 s
in random order at the center of the receptive field against a
homogeneous gray background (15.7 cd/m?). The interstimulus
interval was 1 s. The onset and offset of the stimulus presentation
were timed by the V-SYNC signals of the display. The entire
recording period lasted 1280 s plus the sum of the V-SYNC
signal delays (5.6 s). Because the response latency in the IT
is approximately 80 ms, on average across neurons (Richmond,
Waurtz, & Sato, 1983), we defined the response period asa 1s period
starting 80 ms after the onset of each stimulus presentation.

2.3. Response vector

For both the multineuronal and time-segmental vectorizing
procedures, we expressed the responses of multiple neurons and
their temporal patterns mathematically as vectors (Gochin et al.,
1994; Optican & Richmond, 1987; Richmond & Optican, 1987).

When we vectorize the responses of multiple neurons, the
number of spikes (i.e., spike count) generated from each neuron
during the response period is assigned to a component in the
response vector. Let n be the number of neurons used for the
multineuronal vectorization and the spike count of the i-th neuron
be equal to r;. We represent the response vector of the multiple
neurons as

r= (1,72, ..., (1)

To make the total neuron-seconds of used data equal to 1 neuron-
second, the period for evaluating r; is fixed at (1/n) s.
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