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a b s t r a c t

Phase response curve (PRC) of an oscillatory neuron describes the response of the neuron to external
perturbation. The PRC is useful to predict synchronized dynamics of neurons; hence, its measurement
from experimental data attracts increasing interest in neural science. This paper introduces a Bayesian
method for estimating PRCs from data, which allows for the correlation of errors in explanatory and
response variables of the PRC. The method is implemented with a replica exchange Monte Carlo
technique; this avoids local minima and enables efficient calculation of posterior averages. A test with
artificial data generated by thenoisyMorris–Lecar equation shows that the proposedmethodoutperforms
conventional regression that ignores errors in the explanatory variable. Experimental data from the
pyramidal cells in the rat motor cortex is also analyzed with the method; a case is found where the result
with the proposed method is considerably different from that obtained by conventional regression.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Synchronization between neurons is observed everywhere in
neural systems (Salinas & Sejnowski, 2001; Varela, Lachaux, Ro-
driguez, & Martinerie, 2001). For example, the periodic activities
seen in EEG are regarded as evidence of synchronicity in the brain.
Gray and Singer (1989) proposed a hypothesis that synchroniza-
tion is essential for understanding the ‘‘binding problem’’ in cog-
nitive neuroscience. Fries (2005) introduced the ‘‘communication
through coherence’’ hypothesis, which suggests that coherent os-
cillations of neurons are important for information transmission in
the brain. These hypotheses argue that coherence in neural activi-
ties induced by synchronization is not a side effect but essential for
understanding brain functions.
To deal with synchronization from the theoretical viewpoint,

Kuramoto (1984) developed a theory based on the phase descrip-
tion of an oscillator; see also Ermentrout (1996), Hansel, Mato, and
Meunier (1995), Izhikevich (2007), Kopell and Ermentrout (1990),
Winfree (2001), and recent surveys (Acebrón, Bonilla, Pérez Vi-
cente, Ritort, & Spigler, 2005; Strogatz, 2000). A key concept of this
theory is the phase response curve (PRC), which describes the re-
sponse of an oscillator to external perturbations. According to the
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studies by Kuramoto and his successors, the PRC and the network
topology are two essential features that determine the synchronic-
ity of an oscillator network. In terms of neural science, neuron’s
PRCs can be useful for reconstructing the properties of a network
consisting of neurons.
Many researchers have recently tried to estimate neuron’s

PRCs from experimental data (Ermentrout, Galán, & Urban, 2007;
Ermentrout & Saunders, 2006; Galán, Ermentrout, & Urban, 2005;
Goldberg, Deister, & Wilson, 2007; Gutkin, Ermentrout, & Reyes,
2005; Netoff et al., 2005; Ota, Nomura, & Aoyagi, 2009; Preyer &
Butera, 2005; Tsubo, Takada, Reyes, & Fukai, 2007). Noise in the
PRCmeasurements is often very large, and sophisticated statistical
techniques are necessary for efficient estimation. A typical method
used in these studies is fitting the datawith a linear combination of
trigonometric functions. Ota and co-workers (Aonishi & Ota, 2006;
Ota, Omori, & Aonishi, 2009) introduced a Bayesian procedure
wherein PRCs are assumed to be smooth functions. The Bayesian
approach has the advantage of easily introducing prior information
on PRCs as well as on the measurement process.
A commonweakness of the previous studies is that they neglect

the errors in the PRC explanatory variables. They also neglect the
correlation between errors in the explanatory and response vari-
ables; the significance of this correlation is discussed in Section 2.2.
This study is devoted to developing a new method that can deal
with these errors and the correlation through a systematic use of
Bayesian methods. Unlike previous Bayesian methods (Aonishi &
Ota, 2006; Ota et al., 2009), our method does not require an as-
sumption that the timing of a perturbation represented as a phase,
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Fig. 1. Measurement of a phase response curve. A trial with a perturbation at t = ti is illustrated in the left panel. The solid curve indicates the voltage for the neuron
without perturbation, while the dotted curve indicates the voltage with perturbation. Each point (φi, Zi) in the right panel corresponds to a trial with timing ti . The PRC is
defined by interpolating these points.

later defined as φi in (1), is known exactly. Using the proposed pro-
cedure,we successfully improved the estimationprecision for PRCs
in examples of simulated data. The proposed method is also ap-
plied to experimental data from the pyramidal cells in the rat mo-
tor cortex.
The role of errors in explanatory variables for regression has

been considered in the literature on statistics (Amari & Kawanabe,
1997; Berry, Carroll, & Ruppert, 2002; Caroll, Ruppert, Stefanski, &
Crainiceanu, 2006; Cheng & Ness, 1999; Fuller, 1987). The corre-
lation between errors in the explanatory and response variables
is also treated in some textbooks, for example, Cheng and Ness
(1999), but it seems a less known subject; its appearance in the
present problem of estimating PRCs will be interesting in terms of
statistical science.
The Bayesian model proposed in this paper is nonlinear and

non-Gaussian; a standardway to treat such amodel iswithMarkov
chain Monte Carlo (MCMC) methods (Gelman, Carlin, Stern, & Ru-
bin, 2003; Gilks, Richardson, & Spiegelhalter, 1995; MacKay, 2003;
Robert & Casella, 2004). For the current problem, however, a di-
rect application of standard MCMC methods is difficult due to the
slow convergence of MCMC. To deal with this difficulty, we in-
troduce the replica exchange Monte Carlo (REM) method (Geyer,
1991; Hukushima & Nemoto, 1996; Iba, 2001). The REM is widely
used in statistical physics and biomolecular simulations, and also
applied to statistical inference (Geyer & Thompson, 1995; Huelsen-
beck & Ronquist, 2001; Jasra, Stephens, & Holmes, 2007). Using the
REM, the difficulty is reduced, and we can get results within a rea-
sonable amount of time.
The proposed method for PRC estimation is useful for any kind

of nonlinear oscillator that permits the phase description. Although
our current interest is in applications for brain science, this
method can also be used in other fields of biology, chemistry, and
physics.
The organization of this paper is as follows: in the next section,

we define the PRC and discuss the properties of the correla-
tion between errors in the explanatory and response variables. In
Section 3, we propose a Bayesian model where we consider both
the correlation of errors and smoothness of PRCs. In Section 4,
we discuss how to estimate the PRC from data using the REM. In
Sections 5 and 6, we test the proposed procedure with artificial
data generated using the Morris–Lecar equation (Morris & Lecar,
1981) and data from a real experiment.

2. Phase response curve

2.1. Definition of the phase response curve

First, we define the PRC of a neuron from an operational view-
point. We assume that the activity of a neuron is periodic and that
the period is T . The solid curve in the left panel of Fig. 1 represents
the voltage time-series for the neuron. We consider a set of trials
indexed by i. The neuron is assumed to fire at the origin t = 0. For
the ith trial, a perturbation is added at time t = ti. The neuron then
fires again at time t = T ′i as shown by the dotted curve in Fig. 1.
We repeat this procedure a number of times and plot the points
(φi, Zi), i = 1, . . . , n, defined by

φi = 2π
ti
T
, Zi = 2π

T − T ′i
T

. (1)

The curve Z(φ) interpolating these points is the phase response
curve (PRC) of the neuron and is shown by the solid curve in the
right panel of Fig. 1.
Next, we discuss a connection to the theory of dynamical

systems. Let us represent the state of a neuron by the vector u =
(u(1), . . . , u(m)), whose first component u(1) corresponds to the
voltage of the neuron. An equation that describes dynamics of the
neuron is assumed as

du
dt
= F(u)+ p(t), (2)

where the vector p(t) = (p(1)(t), . . . , p(m)(t)) represents external
perturbation. Hereafter, the vector field F(u) is assumed to have
a stable limit cycle. If the perturbation p(t) is sufficiently small,
Eq. (2) is reduced to

dφ
dt
=
2π
T
+ Z(φ) · p(t), (3)

where a point on the limit cycle is indicated by the phase variable
φ ∈ [0, 2π) (Kuramoto, 1984). Eq. (3) suggests that a neuron is
characterized by the function Z(φ) = (Z (1)(φ), . . . , Z (m)(φ)).
When the perturbation p(t) is added to the first component

u(1) only and the functional form of p(1)(t) is Dirac’s delta function
δ(t − ti), Eqs. (2) and (3) correspond to the experiment defining
PRCs from the operational viewpoint. Thus, we can identify the
function in Eq. (3) with a PRC Z(φ) defined from the operational
viewpoint. The vector function Z(φ) in Eq. (3) can be regarded as a
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