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a b s t r a c t

Kernel methods have been widely used in pattern recognition. Many kernel classifiers such as Support
Vector Machines (SVM) assume that data can be separated by a hyperplane in the kernel-induced
feature space. These methods do not consider the data distribution and are difficult to output the
probabilities or confidences for classification. This paper proposes a novel Kernel-based Maximum A
Posteriori (KMAP) classification method, which makes a Gaussian distribution assumption instead of a
linear separable assumption in the feature space. Robust methods are further proposed to estimate the
probability densities, and the kernel trick is utilized to calculate ourmodel. Themodel is theoretically and
empirically important in the sense that: (1) it presents amore generalized classificationmodel than other
kernel-based algorithms, e.g., Kernel Fisher Discriminant Analysis (KFDA); (2) it can output probability or
confidence for classification, therefore providing potential for reasoning under uncertainty; and (3)multi-
way classification is as straightforward as binary classification in this model, because only probability
calculation is involved and no one-against-one or one-against-others voting is needed. Moreover, we
conduct an extensive experimental comparisonwith state-of-the-art classificationmethods, such as SVM
and KFDA, on both eight UCI benchmark data sets and three face data sets. The results demonstrate that
KMAP achieves very promising performance against other models.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Kernel methods play an important role in machine learning
and pattern recognition (Schölkopf & Smola, 2002; Shawe-
Taylor & Cristianini, 2004). They have achieved success in
almost all traditional tasks of machine learning, i.e., supervised
learning (Mika, Ratsch,Weston, Scholkopf, &Muller, 1999; Vapnik,
1998), unsupervised learning (Schölkopf, Smola, & Müller, 1998),
and semi-supervised learning (Chapelle, Schölkopf, & Zien, 2006;
Xu, Jin, Zhu, King, & Lyu, 2008; Xu, Zhu, Lyu, & King, 2007; Zhu,
Kandola, Ghahramani, & Lafferty, 2005). We focus here on kernel
methods for supervised learning, where the basic idea is to use
the so-called kernel trick to implicitly map the data from the
ordinal input space to a high dimensional feature space, in order
to make the data more separable. Usually, the aim of kernel-based
classifiers is to find an optimal linear decision function in the
feature space, based on certain criteria. The optimal linear decision
hyperplane could be, for example, the one that can maximize
the margin between two different classes of data (as used in
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the Support Vector Machine (SVM) (Vapnik, 1998)), or the one
that minimizes the within-class covariance and at the same time
maximizes the between-class covariance (as used in the Kernel
Fisher Discriminant Analysis (KFDA) (Mika et al., 1999, 2003)), or
the one that minimizes the worst-case accuracy bound (as used in
theMinimax Probability Machine (Huang, Yang, King, & Lyu, 2004;
Huang, Yang, King, Lyu, & Chan, 2004; Huang, Yang, Lyu, & King,
2008; Lanckriet, Ghaoui, Bhattacharyya, & Jordan, 2002)).
These kernel methods usually achieve higher prediction

accuracy than their linear forms (Schölkopf & Smola, 2002). The
reason is that the linear discriminant functions in the feature
space can represent complex separating surfaces when mapped
back to the original input space. However, one drawback of
standard SVM is that it does not consider the data distribution
and cannot properly output the probabilities or confidences for
the resultant classification (Platt, 1999; Wu, Lin, & Weng, 2004).
One needs special transformation in order to output probabilities.
Therefore, it takes a lot of extra effort in order to be applied in
systems that contain inherent uncertainty. In addition, the linear
discriminant function can only separate two classes. For multi-
category problems, we may resort to approaches such as one-
against-one or one-against-others to vote on which class should
be assigned (Hsu & Lin, 2002).
One approach to obtaining classification probabilities is to use a

statistical pattern recognition technique, in which the probability
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density function can be derived from the data. Future items
of data can then be classified using a Maximum A Posteriori
(MAP) method (Duda, Hart, & Stork, 2000). One typical probability
estimation method is to assume multivariate normal density
functions over the data. The multivariate normal density functions
are easy to handle; moreover some problems can also be regarded
as Gaussian problems if there are enough examples, although in
practice the Gaussian distribution cannot be easily satisfied in the
input space.
To solve these problems, in this paper we propose a Kernel-

basedMaximumAPosteriori (KMAP) classificationmethodunder a
Gaussianity assumption in the feature space.With this assumption,
we derive a non-linear discriminant function in the feature space,
in contrast to current kernel-based discriminant methods that
rely only on using an assumption of linear separability for the
data. Moreover, the derived decision function can output the
probabilities or confidences. In addition, the distribution can be
very complex in the original input space when it is mapped back
from the feature space. This is analogous to the case in which
a hyperplane derived with KFDA or SVM in the feature space
could lead to a complex surface in the input space. Therefore,
this approach sets a more valid foundation than the traditional
multivariate probability estimation methods that are usually
conducted in the input space.
Generally speaking, distributions other than the Gaussian

function can also be assumed in the feature space. However, under
a distribution with a complex form, it is hard to get a closed-form
solution and easy to over-fit. More importantly, with the Gaussian
assumption, a kernelized version can be derived without knowing
the explicit form of the mapping functions for our model, while it
is still difficult to formulate the kernel version for other complex
distributions.
It is important to relate our proposed model to other proba-

bilistic kernelmethods. Kernel-based exponential methods (Canua
& Smola, 2006) use parametric exponential families to explic-
itly build mapping functions from the input space to the feature
space. It is also interesting to discuss the Kernel Logistic Regression
(KLR) (Zhu & Hastie, 2005), which employs the logistic regression
to estimate the density function and still leads to a linear func-
tion in the kernel-induced feature space. The kernel-embedded
Gaussian mixture model in Wang, Lee and Zhang (2003) is related
to our model in that a similar distribution is assumed, but their
model is restricted to clustering and cannot be directly used in
classification.
The appealing features of KMAP are summarized as follows.

First, one important feature of KMAP is that it can be regarded
as a more generalized classification model than KFDA and other
kernel-based algorithms. KMAP provides a rich class of family
of kernel-based algorithms, based on different regularization
implementations. Another important feature of KMAP is that it
can output the probabilities of assigning labels to future data,
which can be seen as the confidences of decisions. Therefore, the
proposed method can also be seen as a Bayesian decision method,
which can further be used in systems thatmake an inference under
uncertainty (Smith, 1988). Moreover, multi-way classification is as
easy as binary classification in this model because only probability
calculation is involved and no one-against-one or one-against-
others voting is needed. As shown in Section 2.4, KMAP has the
time complexity O(n3) (where n is the cardinality of data), which
is in the same order as that of KFDA. In addition, the decision
function enjoys the property of sparsity: only a small number of
eigenvectors are needed for future prediction. This leads to low
storage complexity.
The proposed algorithm can be applied in many pattern

recognition tasks, e.g., face recognition, character recognition, and
others. In order to evaluate the performance of our proposed

method, extensive experiments are performedon eight benchmark
data sets from the UCI repository and on three standard face
data sets. Experimental results show that our proposed method
achieves very competitive performance on UCI data. Moreover, its
advantage is especially prominent in face data sets, where only a
small amount of training data are available.
The remainder of this paper is organized as follows. In Section 2,

we derive the kernel-basedMAP classificationmodel in the feature
space and discuss the parameter estimation techniques. Then
the kernel calculation procedure and the theoretical connections
between the KMAPmodel and other kernelmethods are discussed.
Section 3 first reports the experiments on UCI data sets against
other competitive kernel methods, then evaluates our model’s
performance on face data sets. Section 4 draws conclusions and
lists possible future research directions.
We use the following notation. LetX ∈ Rd denote the original

d-dimensional input space, where an instance x is generated from
an unknown distribution. Let C = {1, 2, . . . ,m} be the set of
labels where m is the number of classes. Let P(Ci) denote the
prior probability of class Ci. Let ni be the number of observed data
points in class Ci and n be the amount of training data. A Mercer
kernel is defined as a symmetric function κ , such that κ(x, y) =
〈Φ(x),Φ(y)〉 for all x, y ∈ X, where Φ is a mapping from X
to a feature space H . The form of kernel function κ could be a
linear kernel function, κ(xi, xj) = xi · xj, a Gaussian RBF kernel
function, κ(xi, xj) = exp(−‖xi − xj‖22/σ

2), or a polynomial kernel
function, κ(xi, xj) = (xi · xj + 1)p, for some σ and p respectively.
A kernel matrix or Gram matrix G ∈ Rn×n is a positive semi-
definite matrix such that Gij = κ(xi, xj) for any x1, . . . , xn ∈ X.
G can be further written as [G(1),G(2), . . . ,G(m)], where G(i) is an
n × ni matrix and denotes the subset of G relevant to class Ci.
The covariance matrix of G(i) is denoted by ΣG(i) . We denote µi
and Σi as the mean vector and covariance matrix of class Ci in
the feature space, respectively. The set of eigenvalues and the set
of eigenvectors belonging to Σi are represented as Λi and Ωi. We
write p(Φ(x)|Ci) as the probability density function of class Ci.

2. Kernel-based maximum a posteriori classification

In contrast with the assumption of traditional MAP algorithms,
that the data points satisfy multivariate normal distribution in
the input space, we assume that the mapped data in the high
dimensional feature space follow such a distribution. This is
meaningful in that the distribution can be very complex in the
original input space when the Gaussian distribution is mapped
back from the kernel-induced feature space. In the same sense,
the decision boundary can be more complex when the quadratic
decision boundary is projected into the input space.
In order to make a clear illustration of the reasonability of

the Gaussian distribution in the kernel-induced feature space,
two synthetic data sets, Relevance and Spiral, are used in this
paper. We draw the decision boundary of discriminant functions
conducted in the input space and the feature space, respectively.
Relevance is a data set where only one dimension of the data
is relevant to separate the data. Spiral can only be separated by
highly non-linear decision boundaries. Fig. 1 plots the boundaries
of the discriminant functions for the traditionalMAP algorithmand
the kernel-based MAP algorithm on these two data sets.
It can be observed that theMAP classifier with the Gaussian dis-

tribution assumption in the kernel-induced feature space always
produces more reasonable decision boundaries. For Relevance
data, a simple quadratic decision boundary in the input space can-
not produce good prediction accuracy. However, the kernel-based
MAP classifier separates these two classes of data smoothly. The
difference between the boundaries of these two algorithms is es-
pecially significant for Spiral. This indicates that the kernel-based
MAP classification algorithm can better fit the distribution of data
points through the kernel trick.
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