
Neural Networks 22 (2009) 1011–1017

Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

Generalized neuron: Feedforward and recurrent architectures

Raghavendra V. Kulkarni, Ganesh K. Venayagamoorthy ∗

Real-Time Power and Intelligent Systems Laboratory, Department of Electrical and Computer Engineering, Missouri University of Science and Technology, Rolla, MO, USA

a r t i c l e i n f o

Article history:
Received 21 January 2008
Received in revised form 10 July 2009
Accepted 17 July 2009

Keywords:
Density estimation
Generalized neuron
Nonlinear function approximation
Particle swarm optimization (PSO)
Classification
Recurrent generalized neuron

a b s t r a c t

Feedforward neural networks such as multilayer perceptrons (MLP) and recurrent neural networks are
widely used for pattern classification, nonlinear function approximation, density estimation and time
series prediction. A large number of neurons are usually required to perform these tasks accurately,
which makes the MLPs less attractive for computational implementations on resource constrained
hardware platforms. This paper highlights the benefits of feedforward and recurrent forms of a compact
neural architecture called generalized neuron (GN). This paper demonstrates that GN and recurrent
GN (RGN) can perform good classification, nonlinear function approximation, density estimation and
chaotic time series prediction. Due to two aggregation functions and two activation functions, GN exhibits
resilience to the nonlinearities of complex problems. Particle swarm optimization (PSO) is proposed as
the training algorithm for GN and RGN. Due to a small number of trainable parameters, GN and RGN
require less memory and computational resources. Thus, these structures are attractive choices for fast
implementations on resource constrained hardware platforms.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Multilayer perceptrons (MLPs) have received significant re-
search attention in recent years due to their ability to approximate
any continuous function accurately by means of spatially-local ba-
sis functions (Hornik, Stinchombe, &White, 1989; Widrow & Lehr,
1990). Feedforward neural networks have been used in applica-
tions such as adaptive control (Liu, Kadirkamanthan, & Billings,
1990), pattern classification (Ou & Murphey, 2007), and forecast-
ing (Atiya, El-shoura, Shaheen, & El-sherif, 1999). Due to internal
recurrence, recurrent neural networks (RNNs) possess the capabil-
ity to dynamically incorporate their past experience. The feedback
connection in the RNN topology is used tomemorize past informa-
tion allowing the capability to process the temporal information
(Cichocki & Unbehauen, 1993; Wang, 1996).
Function approximation is a critical task in a broad spectrum

of applications ranging from system identification to pattern clas-
sification. Typical nonlinear function approximation is carried out
using polynomials, spline functions, fuzzy logic networks, wavelet
networks and neural networks.
Many statistical process control methods rely on the estima-

tion of the probability density function (PDF) of their variables. A
large amount of data, which is encountered in most scientific ap-
plications, needs to be modeled in a probabilistic manner. Power

∗ Corresponding author. Tel.: +1 573 341 6641; fax: +1 573 341 4532.
E-mail addresses: arvie@ieee.org (R.V. Kulkarni), gkumar@ieee.org

(G.K. Venayagamoorthy).

demand forecasting (Charytoniukand et al., 1999), speech recog-
nition (Pazhayaveetil & Franzon, 2007), medical image registra-
tion (Niu, 2005), independent component analysis (Xu, Chen, Cong,
Yang, & Shi, 2005) etc. are some of the most common applications
of PDF estimation.
There has been an immense research interest in the forecast-

ing of real-world time series. These are dynamic in nature, and
therefore, time series prediction amounts to dynamic modeling.
The structures that have been applied for chaotic time series
prediction include MLPs (Lapades & Farber, 1987), radial basis
function neural networks (Haykin & Principe, 1998), support vec-
tor regression (Mukherjee, Osuna, & Girosi, 1997), support vec-
tor machines (Shi & Han, 2007), recurrent neural networks (Cai,
Zhang, & Venayagamoorthy, 2007) and nonlinear autoregressive
networks (Principe & Kuo, 1995). The Mackey glass chaotic time
series is a popular time series used in literature as a benchmark
(Mackey & Glass, 1997).
Backpropagation (BP) is the most popular algorithm used for

training multilayer feedforward neural networks (Widrow & Lehr,
1990). Several methods have been proposed for enhancing the
learning speed of BP and strengthening the generalization capa-
bility of layered networks. Apart from multilayer network archi-
tectures various simplified architectures and nonlinear activation
functions have been used. MLP is not an attractive choice for com-
plex applications due to the storage and computational expense
involved in adapting weights for a large number of neurons. A re-
duced number of trainable weights reduces the memory and com-
putational expense, accelerates the convergence, and reduces the
number of training patterns necessary for robust generalization.

0893-6080/$ – see front matter© 2009 Elsevier Ltd. All rights reserved.
doi:10.1016/j.neunet.2009.07.027

http://www.elsevier.com/locate/neunet
http://www.elsevier.com/locate/neunet
mailto:arvie@ieee.org
mailto:gkumar@ieee.org
http://dx.doi.org/10.1016/j.neunet.2009.07.027


1012 R.V. Kulkarni, G.K. Venayagamoorthy / Neural Networks 22 (2009) 1011–1017

This paper presents a generalized neuron (GN) structure for
classification, nonlinear functional approximation and probability
density estimation applications. Further, a recurrent version of GN,
called recurrent GN (RGN) is presented for chaotic time series
prediction. This study uses a particle swarm optimization (PSO)
algorithm for fast and optimal training of GN and RGN (Kennedy
& Eberhart, 1995). The compactness of GN and RGN that have
smaller numbers of trainable weights than in MLP and RNN, and
the convergence speed of PSO over BP as a training algorithm are
exploited in this paper. As anMLP training algorithm, PSO has been
shown to outperform BP in terms of the speed and the quality
of training (Gudise & Venayagamoorthy, 2003). A small number
of trainable weights makes GN a compact structure suitable for
real time hardware implementation on simple hardware platforms
such as microcontrollers. The rest of this paper is organized as
follows: Section 2 covers details on the GN and RGN compact
structures. Section 3 outlines the PSO algorithm for training the GN
and RGN structures. Section 4 discusses the simulation aspects and
the results obtained in the four case studies conducted. And finally,
concluding remarks are given in Section 5.

2. Feedforward and recurrent generalized neuron architec-
tures

The general structure of a typical neuron contains an aggre-
gation function and an activation function. It is shown in the
literature that MLPs are universal approximators of continuous
functions for a given set of input–output patterns (Hornik et al.,
1989). A typical neuron uses summation or multiplication aggre-
gation functions, and hard-limiter, log sigmoidal, radial basis, or
linear activation functions.
The crisp aggregation operators used in the neurons generally

overlook the fact that most of the processing in neural networks is
donewith incomplete information. The GN presented in this paper
uses both summation and multiplication aggregation functions,
and both sigmoid and Gaussian activation functions. Therefore,
the GN has flexibility and resilience to the nonlinearities of real
world problems. The compact structure of a GN and RGN (GN with
feedback connection) is shown in Fig. 1.
AGNuses bothΣ (sum) andΠ (product) aggregation functions.

Theweighted vector of inputsX is summedby an aggregation func-
tionΣ1. Output of this unit is processed by an activation function f1.
Similarly, weighted inputs are multiplied by an aggregation func-
tion Σ2. Output of this unit is processed by a different activation
function f2. Weighted outputs of these two units are summed up.
Two different activation and aggregation functions endow the GN
with flexibility that is not possible in regular MLPs having single
activation and aggregation functions (Chaturvedi, Malik, & Kalra,
2004).
The Σ part of the GN is associated with the summation of

weighted inputs, and it uses a sigmoidal activation function. The
output is obtained as (1).

OΣ = f1(snet) =
1

1+ exp(−λs · snet)
(1)

where

snet =
∑
WΣ iXi + XoΣ . (2)

Here, WΣ are input weights, XoΣ is the bias weight of the Σ
section and λs is the gain factor of theΣ section. TheΠ part of the
GN is associated with multiplication of weighted inputs. It uses a
Gaussian activation function given by (3).

OΠ = f2(pnet) = exp(−λp · p2net) (3)

where

Fig. 1. Structure of a GN (solid lines) and RGN (with feedback shown in dotted
lines).

pnet =
∏
WΠ iXi · XoΠ . (4)

Here, WΠ are input weights, XoΠ is the bias weight of the Π
section and λp is the gain factor of the Π section. The output is
obtained as expressed in (5).

OGN = W · OΣ + (1−W ) · OΠ . (5)

A GN has multiple inputs, but only one output. Therefore, the
number of GNs required equals the desired number of outputs. A
GN having n inputs has (2n+ 1) weights and two biases, a total of
(2n + 3) trainable parameters. Either or both gain factors λs and
λp can be taken as trainable parameters as well, in which case, the
total number of trainable parameters increases accordingly. Other
activation functions, such as sine, cosine, or hyperbolic tangent,
can also be used. The GN in which the weighted outputs of Σ
and Π parts of the proposed GN are added together is called a
summation type GN. Weighted outputs of Σ and Π parts can be
multiplied in order to construct a multiplication type GN. Both Σ
and Π parts partially implement the nonlinear mapping between
inputs and the output and constitute the final output. This adds to
the flexibility of the GN.
RGN is obtainedwith aunit delayedoutput feedback connection

in the structure of the GN. Modification to a GN that converts
it into an RGN structure is shown in dotted lines in Fig. 1. This
modification is represented by (6), (7) and (8).

ORGN = W · OΣ + (1−W ) · OΠ (6)

snet =
∑
WΣ iXi(t)+ XoΣ +WfΣ · ORGN(t − 1) (7)

pnet =
∏
WΠ iXi(t) · XoΠ ·WfΠ · ORGN(t − 1). (8)

Here, WfΣ and WfΠ are the feedback weights of the Σ and Π
sections respectively. A detailed discussion of the contributions of
Σ andΠ parts of a GN is presented in Section 4.6.

3. PSO based training algorithm

PSO is an evolutionary-like computational technique that
belongs to swarm intelligence, a paradigm of computational in-
telligence (Venayagamoorthy, 2009). It is a population based par-
allel search algorithm that models the social behavior of birds
within a flock (Kennedy & Eberhart, 1995). It uses a simple con-
cept, and can be implemented with a few lines of computer
code. It requires only primitivemathematical operators, and there-
fore, it is inexpensive in terms of memory and computational re-
quirements. PSO is shown to be more computationally efficient
than BP in a neural network training task (Gudise & Venayag-
amoorthy, 2003). PSO has been applied in optimization problems
in such diverse fields as reactive power systems (del Valle, Ve-
nayagamoorthy, Mohagheghi, Hernandez, & Harley, 2008), sensor
networks (Wimalajeewa & Jayaweera, 2008), and adaptive phased
array control (Donelli, Azaro, Natale, & Massa, 2006).



Download English Version:

https://daneshyari.com/en/article/404458

Download Persian Version:

https://daneshyari.com/article/404458

Daneshyari.com

https://daneshyari.com/en/article/404458
https://daneshyari.com/article/404458
https://daneshyari.com

