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a b s t r a c t

This paper discusses a new highly robust learning algorithm for exploring local principal component
analysis (PCA) structures in which an observed data follow one of several heterogeneous PCAmodels. The
proposed method is formulated by minimizing β-divergence. It searches a local PCA structure based on
an initial location of the shifting parameter and a value for the tuning parameter β . If the initial choice of
the shifting parameter belongs to a data cluster, then the proposedmethod detects the local PCA structure
of that data cluster, ignoring data in other clusters as outliers. We discuss the selection procedures for the
tuning parameter β and the initial value of the shifting parameter µ in this article. We demonstrate the
performance of the proposed method by simulation. Finally, we compare the proposed method with a
method based on a finite mixture model.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Principal component analysis (PCA) is one of the most popular
technique for processing, compressing and visualizingmultivariate
data. It is widely used for reducing dimensionality of multivariate
data (Jolliffe, 2002). In general, PCA aims to extract the most infor-
mative q-dimensional output vector y(t) from input vector x(t) of
dimensionm, which is achieved by obtaining them×q orthogonal
matrix Γ (i.e. Γ TΓ = Iq, identity matrix). Thus Γ linealy relates
x(t) to y(t) by

y(t) = Γ T
(
x(t)− µ

)
, t = 1, 2, . . . , n (1)

such that components of y(t) are mutually uncorrelated, satisfy-
ing the order of the variances according to the component number
of y(t). In the context of off-line learning Γ and µ are directly ob-
tained as the q dominant eigenvectors of the sample covariance
matrix and the sample mean vector. The classical PCA is character-
ized by minimizing the empirical loss function

1
n

n∑
t=1

z
(
x(t),µ,Γ

)
(2)
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with respect to µ and Γ , where

z(x,µ,Γ ) =
1
2

{
‖x− µ‖2 − ‖Γ T(x− µ)‖2

}
(3)

or half the squared residual distance of x − µ projected onto the
subspace spanned by the columns of Γ (Hotelling, 1933). Higuchi
and Eguchi (2004) proposed a variant of this classical procedure for
robust PCA by minimizing the empirical loss function

LΨ (µ,Γ ) =
1
n

n∑
t=1

Ψ

(
z
(
x(t),µ,Γ

))
(4)

where Ψ (z) is assumed to be a monotonically increasing. Various
choices of Ψ s yield various procedures for PCA including the
identity function Ψ0(z) = z as the classical PCA and the sigmoid
function as the self-organizing rule, cf. (Xu & Yuille, 1995). In
general, Ψ is interpreted as a generic function to give the loss
function LΨ . The minimization of LΨ in Eq. (4) is referred as
minimum psi principle generated by Ψ . Based on an argument
similar to that of the classical PCA, Higuchi and Eguchi (2004)
showed that the minimizer of LΨ (µ,Γ ) satisfies the stationary
equation system forµ and Γ . In neural networks, Γ is interpreted
as the coefficientmatrix connectingmneurons to qneurons,where
a learning process works by off-line renewal of Γ based on a batch
of input vectors or on-line renewal of Γ based on sequential input
vectors (Amari, 1977; Haykin, 1999; Oja, 1989). See also Croux and
Haesbroeck (2000) and Campbell (1980) for robust PCA methods.
All PCA algorithms mentioned above are well discussed and
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established in a context in which the data distribution is uni-
modal, that is, there is only one data center in the entire data space.
In the case of multi-modal distribution, the performance of the

PCA algorithms as early discussed are not so good. In this aspects,
several interesting algorithms for local dimensionality reduction
have been proposed. As for example, mixtures of PCA and mix-
tures of factor analysers proposed by Hinton, Dayan and Revow
(1997), VQPCA (Vector-Quantization PCA) algorithm of Kambhatla
and Leen (1997),mixtures of PPCA algorithmof Tipping and Bishop
(1999), a nonlinear neural network model of mixture of local PCA
proposed by Zhang, Fu and Yan (2001), resolution-based complex-
ity control for Gaussian mixture models of Meinicke and Ritter
(2001), automated hierarchical mixtures of PPCA algorithm of Su
andDy (2004) and an extension of neural gas to local PCA proposed
by Möller and Hoffmann (2004). However, when applying any one
of these algorithms, onemay encounter a difficult problem that the
number of data clusters in the entire data space should be known
in advance. To overcome such problems for local dimensionality
reduction, there exist some alternative ideas which includes vari-
ational inference for Bayesian mixtures of factor analysers pro-
posed by Ghahramani and Beal (2000), unsupervised learning of
finite mixture models suggested by Figueiredo and Jain (2002)
and accelerated variational Dirichlet mixture models of Kurihara,
Welling and Vlassis (2006). Anyway, these type of algorithms may
givesmisleading results in presence of outliers (Hampel, Ronchetti,
Rousseeuw & Stahel, 1986). In this aspect, Ridder and France
(2003) offered robust algorithm based on mixture of PPCA using
t-distributions. However, one major problem in this algorithm is
that it needs number of data clusters in advance. Therefore some
researchers or users may expect a highly robust algorithm against
outlierswhich does not require number of data clusters in advance.
In this paper we propose a new highly robust algorithm for

exploring local PCA structures by minimizing β-divergence in a
situation where we do not know whether the data distribution
is uni-modal or multi-modal. The key idea is the use of a super
robust PCA algorithm with a volume adjustment based on β-
divergence, in which it properly detects one data cluster by ignor-
ing all data in other clusters as outliers. See Higuchi and Eguchi
(1998, 2004), Kamiya and Eguchi (2001) and Mollah, Minami and
Eguchi (2007) for the robust procedures. The proposed method
has a close link with the mixture ICA method proposed by Mol-
lah,Minami and Eguchi (2006). See also Lee, Lewicki and Sejnowski
(2000) for model based mixtures of ICA models. We introduce the
β-divergence satisfying a condition of volume matching which
naturally defines the learning algorithm for both uni-modal and
multi-modal distributions. Also the behavior of the expected loss
function based on the β-divergence in a context of multi-modal
distributions is investigated. Thus the performance of the proposed
learning algorithm beyond robustness is viewed. The proposed
learning algorithm is based on an empirical loss function

Lβ(µ, V ) =
1
n

n∑
t=1

1
β

[
1− det(V )−

1
2

β
β+1 exp{−βw(x(t),µ, V )}

]
(5)

where V is a variance matrix and

w(x,µ, V ) =
1
2
(x− µ)TV−1(x− µ). (6)

Thus the shifting parameter µ is defined by the minimizer of the
loss function (5) with respect to µ; the connection matrix Γ is de-
fined by eigen-decomposition of theminimizer of the loss function
(5) with respect to V . The loss function Lβ(µ, V ) is closely con-
nected with minimum psi-principle if we choose Ψβ(z) = {1 −
exp(−βz)}/β . Themaindifference from theminimumΨ -principle
is that the loss function is defined by a function of V andw in place
of Γ and z in Eq. (4). It may suggest one of robust procedures for
PCA by direct application of the discussion in Higuchi and Eguchi
(2004). Furthermore, we will show that the loss function Lβ(µ, V )

satisfies a remarkable property beyond robustness as follows. Let
us consider a probabilistic situation in which the data distribution
is J-modal. Then the dataset D = {x(t) : t = 1, . . . , n} in Rm can
be decomposed into J mutually disjoint subsets {Dj : j = 1, . . . , J}
such that jth local mode along with mean vector µj and variance
matrix Vj occurs in

Dj = {x(t) : t ∈ Tj} (7)

with partitioned index sets {Tj : j = 1, . . . , J}. Then we will show
that the proposed learning algorithm by minimizing Lβ(µ, V ) can
be extractµj andVj if it start froman initial pointµ ∈ Dj and appro-
priately chosen V . At this time, under a Gaussian mixture density
p(x) =

∑J
j=1 πjϕ(x,µj, Vj), we will observe that(

µj, Vj
)
= argmin

(µ,V )∈Dj×Sm

Lβ(µ, V ; p)

= argmin
(µ,V )∈Dj×Sm

Lβ(µ, V ), (j = 1, 2, . . . , J), (8)

where Sm denotes the space of all the symmetric, positive-definite
matrices of orderm. Thusminimization of Lβ(µ, V )with respect to
(µ, V ) ∈ (Dj × Sm) offers J local minima {(µj, Vj); j = 1, 2, . . . , J}
for J-modal data distribution.
Section 2 describes the new proposal for local PCA by mini-

mizing β-divergence. In Section 3, we discuss the consistency of
the proposed method for local PCA. Section 4 discuss the proposed
learning algorithm. In Section 5, we discuss the adaptive selection
procedure for the tuning parameter. Simulation and discussion is
given in Section 6. Finally, Section 7 presents the conclusions of this
study.

2. Local principal component analysis

Let p(x) and q(x) be probability density functions on a data
space in Rm. The β-divergence of p(x)with q(x) is defined as

Dβ(p, q) =
∫ [

1
β

{
pβ(x)− qβ(x)

}
p(x)

−
1

β + 1

{
pβ+1(x)− qβ+1(x)

}]
dx, for β > 0

which is non-negative, that is Dβ(p, q) ≥ 0, equality holds if and
only if p(x) = q(x) for almost all x in Rm, see Basu, Harris, Hjort
and Jones (1998) and Minami and Eguchi (2002). We note that β-
divergence reduces to Kullback–Leibler (KL) divergence when we
take a limit of the tuning parameter β to 0 as

lim
β↓0
Dβ(p, q) =

∫
p(x) log

p(x)
q(x)

dx

= DKL(p, q).

Let p(x) be the density function of data distribution of x. Then the
minimum β-divergence method is defined by

min
q∈M
Dβ(p, q),

where M denotes a statistical model. Let us consider a kind of
volume match by

D∗β(p, q) = min
κ
Dβ(p, κq)

=
1

β(β + 1)

[∫
pβ+1(x)dx−

{∫
p(x)qβ(x)dx

}β+1{∫
qβ+1(x)dx

}β
]
. (9)

We note that for a fixed data density p the functional D∗β(p, ·) is
defined on the space of nonnegative functions with a finite mass
and that D∗β(p, κq) = D∗β(p, q) for any positive scalar κ . If we
neglect terms depending only on p, then we get the term
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