
Neural Networks 23 (2010) 239–243

Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

Temporal-Kernel Recurrent Neural Networks

Ilya Sutskever ∗, Geoffrey Hinton
Department of Computer Science, University of Toronto, Canada

a r t i c l e i n f o

Article history:
Received 30 April 2008
Revised and accepted 26 October 2009

Keywords:
Recurrent Neural Networks
Fixed points
Long-term dependencies
Backpropagation through time
Supervised learning

a b s t r a c t

A Recurrent Neural Network (RNN) is a powerful connectionist model that can be applied to many chal-
lenging sequential problems, including problems that naturally arise in language and speech. However,
RNNs are extremely hard to train on problems that have long-term dependencies, where it is necessary
to remember events for many timesteps before using them to make a prediction.
In this paper we consider the problem of training RNNs to predict sequences that exhibit significant

long-term dependencies, focusing on a serial recall task where the RNN needs to remember a sequence
of characters for a large number of steps before reconstructing it. We introduce the Temporal-Kernel
Recurrent Neural Network (TKRNN), which is a variant of the RNN that can cope with long-term
dependencies much more easily than a standard RNN, and show that the TKRNN develops short-term
memory that successfully solves the serial recall task by representing the input string with a stable state
of its hidden units.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Recurrent Neural Networks (RNNs) are connectionist models
that operate in discrete time using feedback connections. An RNN
has a set of units, each taking a real value in each timestep, and a
set of weighted connections between its units. The input units are
set by the environment and the output units are computed using
the connection weights and the hidden units.
RNNs have nonlinear dynamics, allowing them to behave in a

highly complex manner. In principle, the states of the hidden units
can store information through time in the form of a distributed
representation and this distributed representation can be used
many timesteps later to predict subsequent input vectors.
RNNs are appealing because of their range of potential appli-

cations: they can be applied to almost any problem with sequen-
tial structure, including the problems that arise naturally in speech,
control, and natural language processing. Since RNNs can represent
highly complex functions of sequences, these problems are likely
to be solvablewith some RNN, so a learning algorithm that can find
this RNN would be very useful in practice.
Unfortunately, RNNs have proved to be difficult to learn with

gradient descent, especially when the sought for RNN must use
its units to store events for more than a few timesteps. Whenever
events in the far past are relevant for predicting the current
timestep, the problem is said to exhibit long-term dependencies.

∗ Corresponding author.
E-mail addresses: ilya@cs.utoronto.ca (I. Sutskever), hinton@cs.utoronto.ca

(G. Hinton).

It is known (Bengio, Simard, & Frasconi, 1994; Hochreiter, 1991)
that gradient descent has great difficulty in learning weights that
make use of long-term dependencies, so the resulting RNNs are
typically no more useful than a simple moving window.
In this paper,we address the problemof learning RNNs that suc-

cessfully predict sequences that exhibit long-term dependencies.
In particular, we focus on a serial recall task in which an arbitrary
sequence of characters must be stored for a variable length of time
until a cue is presented. After the cue is presented, the RNN must
reproduce the stored sequence. The variable time delay makes it
very hard to solve this problem using delay lines, so the RNNmust
learn to convert the arbitrary sequence to a stable distributed pat-
tern of activity and then convert this stable pattern back into the
appropriate sequence when the recall cue arrives.
Our main contribution is a new family of RNNs, the Temporal-

Kernel Recurrent Neural Network (TKRNN), in which every unit is
an efficient leaky integrator,whichmakes it easier to ‘‘notice’’ long-
term dependencies: we demonstrate that the TKRNN can learn to
use its units to store 35 bits of information for at least 50 timesteps
in an immediate serial recall task (e.g., Botvinick & Plaut, 2006).
The TKRNN learns to represent its input with a stable state of its
hidden units, which is relevant to a line of research that uses the
fixed points of biologically-plausible neural networks to represent
useful information, such as shape (Amit, 1995) or eye position
(Seung, 1996; Camperi & Wang, 1998), for extended periods of
time. Our experiments show that the TKRNN’s architecture is
suitable for such problems, and that its performance is comparable
to that of the Long Short-Term Memory (LSTM) (Hochreiter &
Schmidhuber, 1997) when applied to the same tasks.

0893-6080/$ – see front matter© 2009 Elsevier Ltd. All rights reserved.
doi:10.1016/j.neunet.2009.10.009

http://www.elsevier.com/locate/neunet
http://www.elsevier.com/locate/neunet
mailto:ilya@cs.utoronto.ca
mailto:hinton@cs.utoronto.ca
http://dx.doi.org/10.1016/j.neunet.2009.10.009


240 I. Sutskever, G. Hinton / Neural Networks 23 (2010) 239–243

2. Standard Recurrent Neural Networks: Definitions

In this section we formally define the standard RNN (Werbos,
1990; Rumelhart, Hinton, & Williams, 1986). The RNN is a neural
network that operates in time. At each time t , the value of the
RNN’s input units is given by xt , and the RNN computes the values
of its hidden units (yt ) and output units (zt ) by the equations

yt = f
(
Wy→yyt−1 +Wx→yxt

)
(1)

zt = g
(
Wz→yyt +Wx→zxt

)
(2)

where Wz→y is a matrix of size nz × ny of the weights of the
connections between the hidden units y and the output units z. A
common choice for the functions f : Rn → Rn and g : Rn → Rn is
the sigmoid and the softmax functions, which are

f (x)(i) =
1

1+ exp(−x(i))
(3)

g(x)(i) =
exp(x(i))
n∑
j=1
exp(x(j))

(4)

where in these equations x is a generic n-dimensional vector and
x(i) is its i’th coordinate. Other definitions of f and g are also
possible. Thus, given a setting of the RNN’s parameters, these
equations completely determine the values of the RNN’s hidden
({yt}t ) and output ({zt}t ) units for any sequence of input vectors
{xt}t .
An RNN can be trained to approximate a highly complex func-

tion on sequences using a collection of training input sequences
{xt}t and their corresponding desired outputs {vt}t . The problem of
learning the RNN’s connection weights is formulated as a problem
of minimizing a cost function C that measures the RNN’s deviation
from perfect behavior:

C =
T∑
t=1

Ct =
T∑
t=1

c(zt , vt) (5)

where T is the length of the sequence, and c(zt , vt) is a measure
of distance between the desired output and the actual output (we
use the cross-entropy c(x, z) = −

∑
i z
(i) log x(i)).

3. Temporal-Kernel Recurrent Neural Networks

The backpropagation through time algorithm (BPTT) (Werbos,
1990; Rumelhart et al., 1986) can efficiently compute the gradient
of the RNNs cost function (Eq. (5)), so itmay seem that RNNs should
be easy to learn. However, if the RNN must learn to remember
events in the far past in order to make accurate predictions about
the present where the relevant events are always separated by
many timesteps, the RNN learned by BPTTwill fail to use its hidden
units to store the important relevant information from the past.
A theoretical analysis (Bengio et al., 1994; Hochreiter, 1991)

shows that learning is hard because the past is separated from the
present with a large number of nonlinearities, causing the gradient
to get ‘‘diluted’’ and uninformative as it flows backwards through
time. If we allow the gradient to skip timesteps as it flows back-
wards, it can influence the past more directly and be less diluted,
which is easily achieved by adding direct connections between
units that are separated in time: if k is not too large (<k0), we con-
nect yt−k and yt with connections whose weights are independent
of t . By adding these connections, we essentially obtain the NARX
RNN (Lin, Horne, Tino, & Giles, 2000).
These additional connections allow the NARX RNN to learn

long-term regularities that are k0 times more separated in time
than the standard RNN, which can be substantial when k0 is large.

However, NARX RNNs have two drawbacks. First, NARX RNNs are
k0 times slower than RNNs (per iteration), and second, NARX RNNs
have k0 timesmore parameters than a standard RNNwith the same
number of units. This is particularly costly because k0 often needs
to be large, so the NARX RNN mitigates the problem of learning at
the expense of being slower and larger.
Our contribution is a new family of RNNs that has many of the

advantages of the NARX RNN without its disadvantages. We in-
troduce the Temporal-Kernel Recurrent Neural Network (TKRNN),
which is an RNN with direct connections between units in all
timesteps (from yt to yt ′ for all t ′ < t), which is as efficient as the
standard RNN and has almost the same number of parameters. We
also introduce the TKRNN+n, which is an RNN whose weights are
the sumof theweights of n TKRNNs; the TKRNN+n is n times slower
than the TKRNN per forward/backward pass, but it finds consider-
ably better solutions.
The main idea of the TKRNN is to make each of its units act as a

leaky integrator while keeping the forward and the backward pass
efficient. The equation that governs the TKRNN’s hidden units is

yt (i) = f

(
t∑
k=1

(
ny∑
j=1

(λ(j))k−1Wy→y
(j,i)y(j)t−k

+

nx∑
m=1

(λ(m))k−1Wx→y
(m,i)x(m)t−k

))
(6)

where 0 < λ(j) < 1 is an additional parameter for each unit j that
determines the extent towhich theunit candirectly influenceunits
in future timesteps, or, equivalently, the extent to which units are
influenced by unit j’s activities in previous timesteps.1 An analo-
gous equation defines the output units.
The TKRNN has connections between units in all timesteps

which make the gradient flow through less nonlinearities, but
rather than being arbitrary, the connections’ weights are factored
in space and time: the weight of the connection between unit y(j)t
and y(i)t−k is Wy→y

(j,i)(λ(j))k−1, which ensures that the number of
parameters is small and that the forward and the backward passes
can be performed efficiently. Eq. (6) implies that the units’ input is
an average of the units’ past activities weighted by the exponential
kernel.
Previouswork inwhich units were similarly connected through

time with a kernel include (Hinton & Brown, 2000; Natarajan,
Huys, Dayan, & Zemel, 2008), although they were used in a differ-
ent context. Notably, the Gammamodel (De Vries & Principe, 1992)
is a closely related RNN architecture that uses a related family of
kernels.
The TKRNN’s definition causes the forward and backward

passes to be as efficient as those of a standard RNN: notice that
Eq. (6) can be rewritten as

yt (i) = f

(
ny∑
j=1

Wy→y
(j,i)

t∑
k=1

(λ(j))k−1y(j)t−k

+

nx∑
m=1

Wx→y
(m,i)

t∑
k=1

(λ(m))k−1x(m)t−k

)
(7)

so if we define

Sy(j)t =
t∑
k=1

(λ(j))k−1y(j)t−k (8)

Sx(m)t =
t∑
k=1

(λ(m))k−1x(m)t−k (9)

1 We slightly abuse notation and treat the variables λ(j) and λ(m) as distinct.



Download English Version:

https://daneshyari.com/en/article/404473

Download Persian Version:

https://daneshyari.com/article/404473

Daneshyari.com

https://daneshyari.com/en/article/404473
https://daneshyari.com/article/404473
https://daneshyari.com

