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Artificial neural networks have frequently been proposed for electricity load forecasting because of their
capabilities for the nonlinear modelling of large multivariate data sets. Modelling with neural networks
is not an easy task though; two of the main challenges are defining the appropriate level of model
complexity, and choosing the input variables. This paper evaluates techniques for automatic neural
network modelling within a Bayesian framework, as applied to six samples containing daily load and
weather data for four different countries. We analyse input selection as carried out by the Bayesian
‘automatic relevance determination’, and the usefulness of the Bayesian ‘evidence’ for the selection of
the best structure (in terms of number of neurones), as compared to methods based on cross-validation.
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1. Introduction

Neural networks (NNs) have frequently been proposed for
short-term load forecasting (STLF), because of their capabilities for
nonlinear modelling of large multivariate datasets.

The family of NN models known as multilayer perceptrons
(MLPs) are probably the most frequently used, since they have been
shown to be universal approximators of functions (Haykin, 1999),
and can be used to model the function that relates the electric load
to its exogenous variables.

Modelling with MLPs is not an easy task though; two of the main
challenges are defining the appropriate level of model complexity,
and choosing the input variables. The complexity of a NN is dic-
tated, in the first instance, by its architecture; for NNs with one
hidden layer with sigmoid neurones, and an output layer with lin-
ear neurones (the sort of NN most frequently used for STLF), the
complexity depends mostly on the number of hidden neurones.
However, the architecture is but one aspect of the problem, since
the size of the weights (their absolute values) must also be taken
into account. If the weights are small, the activation functions of
the neurones will be operating in the central part of their ranges,
which is practically linear. A large NN, in this case, would be no
more complex than a linear regression model.

In order to control the complexity of a NN, one has to work on
these two aspects. First, one should choose the right architecture
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(the appropriate number of neurones). This may be done by chang-
ing the number of neurones step by step, until an optimum value
is found. The initial model may be either a very large one, from
which neurones are progressively removed (‘pruning’ algorithms),
or a small one, to which neurones are progressively added (‘grow-
ing’ algorithms). The choice is based on the principle of parsimony
(a model should be as complex as necessary for a given task, but
not more), and it requires some measure of NN complexity to be
evaluated at each step. Second, one should control the size of the
NN weights by using ‘regularisation’ techniques. These techniques
add a term to the NN cost function that penalises for large weights,
which ensures that the training algorithm will lead to NN weights
that are as small as possible (Haykin, 1999).

Another difficult task in NN modelling (as in all nonlinear mod-
elling) is the selection of the subset of variables to be used as in-
puts. Some metrics for the influence of each variable on the output
are needed; a comparison of methods to evaluate this influence is
done by Papadokonstantakis, Lygeros, and Jacobsson (2006), who
consider three groups of methods: (a) those that take only the data
into account, before the NN modelling (statistical methods such
as PCA, etc.); (b) those that affect the training (such as ARD, dis-
cussed below); and (c) those applied on the trained NN. For this last
group, two kinds of metrics of input relevance are considered — the
ones that measure the input’s ‘predictive importance’ (i.e., the in-
crease in the generalisation error when an input is omitted), and
the ones that measure its ‘causal importance’ (the change in the
output caused by changes in the input) (Lampinen & Vehtari, 2001).
The predictive importance may be empirically evaluated on an in-
dependent sample; the causal importance is usually measured by
analytical means, such as the second derivatives of the error, infor-
mation theory measures, etc.
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Besides choosing architecture and inputs, the NN designer also
has to tune several parameters, depending on the algorithm used,
such as regularisation coefficients, momentum rate, learning rate,
etc. Acommon way of supporting these choices and tunings is to do
trial-and-error simulations on a ‘validation’ sample, distinct from
the training and the testing ones; this procedure is called ‘cross-
validation’ (CV).

Cross-validation is an empirical technique that can be put to
many uses - comparing different architectures or input sets, avoid-
ing overfitting, tuning training parameters, etc. However, it also
has its problems. On the theoretical side, Cataltepe, Abu-Mostafa,
and Magdon-Ismail (1999) showed that there is no guarantee that
the model selected by CV is indeed the best one. Intuitively, this
is easy to understand; given an infinite number of models, it is al-
ways possible to find one that overfits both the training and the val-
idation set, and proves to be useless out-of-sample. In real world
applications, however, the number of models to be compared is
usually small, and this problem does not happen. On the practi-
cal side, CV has some limitations too. First, the estimates of gen-
eralisation ability obtained on a CV sample are noisy. A different
CV sample may lead to different conclusions; to overcome this, it
is advisable to use several CV samples and average their results,
using methods such as k-fold, leave-one-out, or bootstrap (Efron &
Tibshirani, 1993; Lendasse, Wertz, & Verleysen, 2003).

For forecasting applications, however, this is not possible, since
the CV sample must always consist of data that are more recent
than the training data, but older than the data used for out-of-
sample testing; this reduces the choices of possible CV samples.
Also, CV may only be used to tune one discrete variable at a time. If
it is necessary to optimise n parameters, and each one can assume
m distinct values, it will be necessary to run the simulation m"
times, and the computational cost might easily become prohibitive.

Among the methods that have been proposed to deal with these
difficulties in NN modelling, this paper focuses on the Bayesian ap-
proach. In this method, any variables of interest (weights, regular-
isation coefficients, number of neurones, relevance of inputs, NN
outputs, etc.) are modelled by random variables, for which prior
distributions are assumed; after the data have been collected, pos-
terior distributions are derived, by means of the theorem of Bayes.
In principle, there are several advantages to this approach, in com-
parison to more traditional ones based on CV: it is possible to ob-
tain probability distributions for the variables of interest, and not
only point estimates (which allows the researcher to quantify the
uncertainty by means of confidence intervals); all available data
can be used for training (since there is no need to reserve data
for a CV sample); the relevance of the inputs can be assessed af-
ter the training (by a technique called Automatic Relevance Deter-
mination, discussed below); and the optimum number of neurones
can be found (by comparing the Bayesian ‘evidence’ of the models).
Reviews of the Bayesian approach to NNs can be found in Lampinen
and Vehtari (2001), Penny and Roberts (1999), Thodberg (1996)
and Titterington (2004).

The application of Bayesian theory to neural networks was
started by Buntine and Weigend (1991). Mackay (1992a, 1992b) in-
troduced the ‘evidence approximation’ framework, which is based
on a Gaussian approximation for the posterior distribution of
the network weights. This framework simplified the mathemati-
cal treatment, and allowed the derivation of expressions to esti-
mate the most probable values of the hyperparameters, and the
most probable model. Other authors avoided the approximation
by integrating the posterior with a numerical technique known
as Markov Chain Monte Carlo (MCMC) (Barber & Bishop, 1997;
Lampinen & Vehtari, 2001; Muller & Rios Insua, 1998), with hy-
brids between MCMC and genetic algorithms (Chua & Go, 2003;
Liang, 2005), or with techniques that use neither Gaussian approx-
imations or MCMC: the variational method (Titterington, 2004),

and the Bayesian conjugate prior method (Rossi & Vila, 2006;
Vila, Wagner, & Neveu, 2000). Research on Mackay’s evidence ap-
proximation approach was carried further by several authors, but
the conclusions about the usefulness of this technique were con-
flicting. Thodberg (1996) was overall favourable, but Lampinen
and Vehtari (2001) and Penny and Roberts (1999) tended to be
sceptical, particularly for problems where the number of train-
ing patterns was small with respect to the number of weights.
Recently, however, the evidence approximation framework was
applied to STLF by Lauret, Fock, Randrianarivony, and Manicom-
Ramsamy (2008) and Silva and Ferreira (2007), with reportedly
good results.

STLF is an essential task in the daily operation of electric power
systems, both for technical and financial reasons. Forecasts with
lead times ranging from a few hours to one week ahead are needed
to support the decisions of the system operators and market
agents, in performing tasks such as load dispatching, scheduling
of generation, energy trading, and purchasing of fuel. Accurate
forecasts have been shown to lead not only to more security in the
operation but also to considerable cost savings (Bunn, 2000). All
this has increased the demand for improved forecasting methods,
and a great deal of research has been devoted to this area.

In this paper we evaluate the application of Mackay’s ev-
idence approximation framework to STLF, using six samples.
Samples I and II are series of hourly values for loads and
for five weather variables, from England and Wales; Sam-
ples Il and IV are series of hourly loads and temperatures,
from a utility in Rio de Janeiro. In order to confirm the find-
ings from those data, we then repeat the study on two more
samples, available online, which have already been used by several
other researchers: one series of hourly loads and temperatures for
a North American utility (Sample V); and one series of hourly loads
and temperatures for a utility in Slovakia (Sample VI). We compare
the results of the Bayesian methods to those of methods based on
CV, and to a naive method that serves as a benchmark.

The paper is organised as follows. Section 2, presents a short
overview of the Bayesian approach to NN modelling; Section 3
describes the routines used in the studies; Section 4 presents the
datasets and discusses the results; and Section 5 is the conclusion.

2. The Bayesian approach to neural network modelling - An
overview

This section provides a short introduction to the Bayesian ap-
proach to NN modelling, summarised from Bishop (1995). The idea
is to introduce the concepts of evidence and of automatic relevance
determination, on which the analyses in this study are based.

Bayesian NN modelling starts by postulating that the weights
w of a NN are random variables, and assuming a prior distribution
p(w) for them. After a sample has been observed, a posterior
distribution p(w|D) is calculated by means of Bayes theorem,

p(WID) = p(D|w)p(w) (1
p(D)

where w is the weight vector and D = {t}" is the set of target
vectors. The probability p(D|w) is the likelihood, usually called
the evidence in this context. Expression (1) should have all the
probabilities conditioned on the input data X; however, since the
NNs do not model X, and the conditionings affect both sides of the
equation, this can be omitted from the notation.

2.1. Evaluating the posterior distribution of weights

To ensure smooth mappings, exponential models are usually
assumed both for the prior distribution and for the noise added to
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