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a b s t r a c t

Memories in Adaptive Resonance Theory (ART) networks are based on matched patterns that focus
attention on those portions of bottom-up inputs that match active top-down expectations. While this
learning strategy has proved successful for both brain models and applications, computational examples
show that attention to early critical features may later distort memory representations during online fast
learning. For supervised learning, biased ARTMAP (bARTMAP) solves the problem of over-emphasis on
early critical features by directing attention away from previously attended features after the system
makes a predictive error. Small-scale, hand-computed analog and binary examples illustrate key model
dynamics. Two-dimensional simulation examples demonstrate the evolution of bARTMAP memories as
they are learned online. Benchmark simulations show that featural biasing also improves performance on
large-scale examples. One example, which predictsmovie genres and is based, in part, on the Netflix Prize
database, was developed for this project. Both first principles and consistent performance improvements
on all simulation studies suggest that featural biasing should be incorporated by default in all ARTMAP
systems. Benchmark datasets and bARTMAP code are available from the CNS Technology Lab Website:
http://techlab.bu.edu/bART/.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

During learning, Adaptive Resonance Theory (ART) models
encode attended featural subsets called critical feature patterns.
With winner-take-all coding, when a novel exemplar activates an
established category only the features of the bottom-up input that
are also in the top-down critical feature pattern remain active
in working memory. The network hereby focuses attention on
a subset of the input, ignoring other incoming features as not
relevant to the currently active category. If the top-down/bottom-
up pattern meets a matching criterion, the learned critical feature
pattern sharpens, shedding features not represented in the current
input.
The strategy of learning attended critical feature patterns,

rather than basing memories on whole bottom-up inputs, has
proved successful both in models of cognitive information
processing and in applications of unsupervised ART and supervised
ARTMAP systems. However, focusing on features that were critical
early in learning may lead a system later to pay too much
attention to these features. Computational examples show that, for
certain input sequences, such undue featural attention can distort
system memories and reduce test accuracy. If training inputs are
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repeatedly presented, an ARTMAP system will correct these errors
— but real-time learning may not afford such repeat opportunities
before action is required.
Biased ARTMAP (bARTMAP) solves the problem of over-

emphasis on early critical features by directing attention away
from previously attended features after the system makes a
predictive error. A variety of examples demonstrate that bARTMAP
performance is consistently better than that of fuzzy ARTMAP.
Small-scale, hand-computed analog and binary examples illustrate
key model dynamics. Two-dimensional simulation examples
demonstrate the evolution of bARTMAP memories as they are
learned online. Benchmark simulations show that featural biasing
also improves performance on large-scale examples. The Boston
remote sensing image example (Carpenter, Martens, & Ogas,
2005) has been used in previous studies. A second example,
which predicts movie genres and is based, in part, on the Netflix
Prize database, was developed for this project. Both benchmark
datasets and biased ARTMAP software are available from the CNS
Technology Lab Website (http://techlab.bu.edu/bART/).
For a given training input, biased ARTMAP tracks attended

features that have led to predictive errors, and reduces activation
of these features during search. Bias strength is controlled by a free
parameter λ, with the network reducing to the unbiased system
(fuzzy ARTMAP) when λ = 0. For a given application, an optimal
value of λ can be determined by validation, but setting λ equal
to a default value of 10 produces near-optimal results on small-
scale and large-scale computational examples. Improvements in
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Fig. 1. Complement coding transforms an M-dimensional feature vector a into a
2M-dimensional system input vectorA. A complement-coded input represents both
the degree to which a feature i is present (ai) and the degree to which that feature
is absent (1− ai).

test accuracy are accompanied by reduced overlap of the category
boxes that geometrically represent network memories, with little
or no increase in network size. All examples use the same default
ARTMAP parameters, with winner-take-all coding, fast learning,
andmaximum generalization. In a fast-learning system, long-term
memory variables reach their asymptotes on each input trial.

2. ART and ARTMAP

ART neural networks model real-time prediction, search,
learning, and recognition. ART networks serve both as models
of human cognitive information processing (Carpenter, 1997;
Grossberg, 1999, 2003) and as neural systems for technology
transfer (Caudell, Smith, Escobedo, & Anderson, 1994; Lisboa,
2001; Parsons & Carpenter, 2003).
Design principles derived from scientific analyses and design

constraints imposed by targeted applications have jointly guided
the development of many variants of the basic networks, includ-
ing fuzzy ARTMAP (Carpenter, Grossberg, Markuzon, Reynolds,
& Rosen, 1992), ARTMAP-IC (Carpenter & Markuzon, 1998), and
Gaussian ARTMAP (Williamson, 1998). One distinguishing charac-
teristic of different ARTMAP models is the nature of their inter-
nal code representations. Early ARTMAP systems, including fuzzy
ARTMAP, employ winner-take-all coding, whereby each input ac-
tivates a single category node during both training and testing.
When a node is first activated during training, it is permanently
mapped to its designated output class.
Starting with ART-EMAP (Carpenter & Ross, 1995), ARTMAP

systems have used distributed coding during testing, which
typically improves predictive accuracy while avoiding the design
challenges inherent in the use of distributed code representations
during training. In order to address these challenges, distributed
ARTMAP (Carpenter, 1997; Carpenter, Milenova, & Noeske, 1998)
introduced a new network configuration, new learning laws,
and even a new unit of long-term memory, replacing traditional
weights with adaptive thresholds (Carpenter, 1994).
Comparative analysis of the performance of ARTMAP systems

on a variety of benchmark problems has led to the identification
of a default ARTMAP network (Carpenter, 2003), which features
simplicity of design and robust performance in many application
domains. Default ARTMAP employs winner-take-all coding during
training and distributed coding during testing within a distributed
ARTMAP network configuration. With winner-take-all coding
during testing, default ARTMAP reduces to the version of fuzzy
ARTMAP that is used here as the basis of comparison with biased
ARTMAP. However, the biased ARTMAP mechanism is a small
modular addition to the ART orienting subsystem, and could be
readily added to any other version of the network.

2.1. Complement coding: Learning both absent and present features

ART and ARTMAP employ a preprocessing step called com-
plement coding (Fig. 1), which models the nervous system’s

ubiquitous computational design known as opponent processing
(Hurvich & Jameson, 1957). Balancing an entity against its oppo-
nent, as in agonist–antagonist muscle pairs, allows a system to
act upon relative quantities, even as absolute magnitudes may
vary unpredictably. In ART systems, complement coding (Carpen-
ter, Grossberg, & Rosen, 1991) is analogous to retinal ON-cells and
OFF-cells (Schiller, 1982). When the learning system is presented
with a set of feature values a ≡ (a1 . . . ai . . . aM), complement cod-
ing doubles the number of input components, presenting to the
network both the original feature vector a and its complement ac .
Complement coding allows an ART system to encode within its

critical feature patterns of memory features that are consistently
absent on an equal basis with features that are consistently present.
Features that are sometimes absent and sometimes present when
a given category is learning becomes uninformative with respect
to that category. Since its introduction, complement coding has
been a standard element of ART and ARTMAP networks, where it
playsmultiple computational roles, including input normalization.
However, this device is not particular to ART, and could, in
principle, be used to preprocess the inputs to any type of system.
To implement complement coding, component activities ai of a

feature vector a are scaled so that 0 ≤ ai ≤ 1. For each feature i, the
ON activity ai determines the complementary OFF activity (1− ai).
Both ai and (1− ai) are represented in the 2M-dimensional
system input vector A = (a | ac) (Fig. 1). Subsequent network
computations operate in this 2M-dimensional input space. In
particular, learned weight vectorswJ are 2M-dimensional.

2.2. ARTMAP search and match tracking

The ART matching process triggers either learning or a parallel
memory search (Fig. 2). When search ends, the learned memory
may either remain the same or incorporate new information from
matched portions of the current input. While this dynamic applies
to arbitrarily distributed activation patterns at the coding field F2,
the code will here be described as a single active category node J
in a winner-take-all system.
Before ARTMAP makes an output class prediction, the bottom-

up inputA ismatched against the top-down learned expectation, or
critical feature pattern, that is read out by the active node (Fig. 2b).
Thematching criterion is set by a parameter ρ called vigilance. Low
vigilance permits the learning of abstract prototype-like patterns,
while high vigilance requires the learning of specific exemplar-like
patterns. When a new input arrives, vigilance equals a baseline
level ρ̄. Baseline vigilance is set equal to zero by default in order to
maximize generalization. Vigilance rises after the systemhasmade
a predictive error. The internal control process that determines
how far ρ must rise in order to correct the error is called match
tracking (Carpenter, Grossberg, & Reynolds, 1991). As vigilance
rises, the network is required to pay more attention to how well
top-down expectations match the current bottom-up input.
Match tracking (Fig. 3) forces an ARTMAP system not only

to reset its mistakes but to learn from them. With match
tracking, fast learning, and winner-take-all coding, each ARTMAP
network passes the Next Input Test, which requires that, if a
training input were re-presented immediately after a learning
trial, it would directly activate the correct output class, with
no predictive errors or search. Match tracking simultaneously
implements the design goals of maximizing generalization and
minimizing predictive error without requiring the choice of a fixed
matching criterion. ARTMAPmemories thereby include both broad
and specific pattern classes, with the latter typically formed as
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