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a b s t r a c t

In this paper, a novel approach termed Enhanced Dynamic Self-Generated Fuzzy Q-Learning (EDSGFQL)
for automatically generating Fuzzy Inference Systems (FISs) is presented. In the EDSGFQL approach,
structure identification and parameter estimations of FISs are achieved via Unsupervised Learning
(UL) (including Reinforcement Learning (RL)). Instead of using Supervised Learning (SL), UL clustering
methods are adopted for input space clustering when generating FISs. At the same time, structure and
preconditioning parts of a FIS are generated in a RL manner in that fuzzy rules are adjusted and deleted
according to reinforcement signals. The proposed EDSGFQL methodologies can automatically create,
delete and adjust fuzzy rules dynamically. Simulation studies on wall-following and obstacle avoidance
tasks by a mobile robot show that the proposed approach is superior in generating efficient FISs.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Fuzzy Logic (FL) was first proposed by Zadeh (1965) in 1965 and
it has been deployed in awide range of applications (Dubois, Prade,
& Yager, 1997). However, some shortcomings of FL are the lack
of systematic design and learning capability. To circumvent these
problems, FL is usually combined with Neural Networks (NNs) and
the hybrid technology of Fuzzy Neural Networks (FNNs) combines
the profound learning capability of NNs (Lee & Kil, 1991; Zurada
& Malinowski, 1994) with the mechanism of explicit and easily
interpretable knowledge presentation provided by FL.
The main issues for generating a FIS are structure identification

and parameter estimation. Structure identification is concerned
with how to determine the number of fuzzy rules according to
the task requirement while parameter estimation involves the
determination of parameters for both premises and consequents of
fuzzy rules (Wu & Er, 2000). According to the information sources
of learning, structure identification and parameter estimation
can be accomplished by Supervised Learning (SL), Unsupervised
Learning (UL) and Reinforcement Learning (RL). Note that RL is
considered as a special type of UL in some works.
The key characteristic of SL is the existence of a ‘‘teacher’’, the

instructive training input-output data. A great number of research
results for generating FISs via SL paradigms have been reported
(Jang, 1993; Wu & Er, 2000; Wu, Er, & Gao, 2001). However, the
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instructive training data required in SL are not always available
especially when a human being has little knowledge about the
system or the system is uncertain. In those situations, UL and RL
are preferred over SL as UL and RL are learning processes that do
not need any instructive information.
Recently, a number of researchers have applied RL to train

the consequent parts of a FIS (Er & Deng, 2004; Jouffe, 1998;
Juang, 2005). In the Fuzzy Q-Learning (FQL) of Jouffe (1998), the
consequent parts of a FIS are selected by Q-learning (Watkins &
Dayan, 1992). However, structure and premise parameters are still
determined by a priori knowledge. To circumvent this problem,
a Dynamic Fuzzy Q-Learning (DFQL) was proposed in Er and
Deng (2004) and an online Clustering and Q-value based Genetic
Algorithm learning scheme for Fuzzy system design (CQGAF) was
proposed in Juang (2005).
Both DFQL and CQGAF methods achieve online structure

identification by creating fuzzy rules when the input space is
not well partitioned. However, both methods cannot adjust the
premise parameters except during rule creation. Structure and
preconditioning parts of FISs are generated without considering
the system performance. Moreover, both methods cannot delete
fuzzy rules once they are generated even when the rules become
redundant. Although the author of Juang (2005) declared that
the number of rules could be reduced by a similarity test of
the Membership Functions (MFs), the generated rules cannot be
deleted as there is no criterion to delete them. As an efficient FIS,
the system should be adjusted according to system performance
and dormant or unnecessary rules should be deleted.
A weight decay method was discussed in the work of Reed

(1993), a pruning approach based on the output of each neuron
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Fig. 1. Structure of the fuzzy inference system in neural networks.

unit was presented in Lu, Sundararajan, and Saratchandran (1997)
and the Error Reduction Ratio method presented in Chen, Cowan,
and Grant (1991) was adopted as a pruning strategy in Wu and
Er (2000) and Wu et al. (2001). However, they are suitable for SL
approaches only and cannotworkwellwithout instructive training
data. All those pruning methods delete redundant rules which
are with small sensitivity or significance. The idea of considering
sensitivity and significance of fuzzy rules has been adopted in this
paper. Contributions and participation of fuzzy rules are regarded
analogously to the significance and sensitivity which are evaluated
via UL (including RL) approaches and novel pruning methods
without SL are proposed in this paper.
AnovelUL algorithm termedEnhancedDynamic Self-Generated

Fuzzy Q-learning (EDSGFQL) is proposed for determining struc-
ture and preconditioning parameters of FISs in this paper. Conse-
quent parameters of FISs are estimated following the FQL in Jouffe
(1998). An ε-completeness criterion is adopted for clustering the
input space and generating fuzzy rules. At the same time, an ex-
tended Self Organizing Map (SOM) algorithm is proposed to allo-
cate the centers of fuzzy MFs as an UL approach in the EDSGFQL.
Contributions of each fuzzy rules are evaluated through a rein-
forcement sharing mechanism. The EDSGFQL is capable of auto-
matically generating and pruning fuzzy rules. Furthermore, it can
tune both premise and consequent parameters of FISs simultane-
ously according to the reinforcement signals. Comparative studies
on wall-following and obstacle avoidance tasks by a mobile robot
demonstrate that the proposed EDSGFQL approach is superior in
generating FISs.
The organization of this paper is as follows: The architecture

of EDSGFQL system is introduced in Section 2, while the EDSGFQL
algorithm for self-generation of FISs is proposed in Section 3.
Simulation results and comparison studies with related works are
presented in Section 4. Finally, concluding remarks are given in
Section 5.

2. Architecture of the EDSGFQL system

In this paper, training of a FIS is based on extended Ellipsoidal
Basis Function (EBF) neural networks, which are functionally
equivalent to a simple Takagi-Sugeno-Kang (TSK) fuzzy system
(Jang, 1993). The structure of the neural-networks-based FIS is
depicted in Fig. 1.
Layer one is an input layer and layer two is a fuzzification layer

which evaluates the MFs of the input variables. The MF is chosen

as a Gaussian function and each input variable xi (i = 1, 2, . . . ,N)
has LMFs given by

µij(xi) = exp

[
−
(xi − cij)2

σ 2ij

]
i = 1, 2 . . .N, j = 1, 2 . . . , L (1)

where µij is the jth MF of xi, while cij and σij are the center and
width of the jth GaussianMF of xi respectively. Layer three is a rule
layer. The output of the jth rule Rj(j = 1, 2, . . . L) in layer three is
given by

fj(x1, x2, . . . , xN) = exp

[
−

N∑
i=1

(xi − cij)2

σ 2ij

]
j = 1, 2, . . . , L (2)

if multiplication is adopted for the T-norm operator.
Normalization takes place in layer four and we have

φj =
fj
L∑
i=1
fi

j = 1, 2, . . . , L. (3)

Lastly, nodes of layer five define output variables. If the Center-
of-Gravity method is performed for defuzzification, the output
variable, as aweighted summation of the incoming signals, is given
by

y =
L∑
j=1

φjωj (4)

where ωj is the consequent weighting parameter and φj is the
normalized firing strength of the jth rule.
A fuzzy rule in this structure is expressed as follows:

If x1 is (c1j, σ1j) and x2 is (c2j, σ2j) · · · and xN is (cNj, σNj)
Then, y is ωj

where cij and σij, i = 1, 2, . . . ,N , are the center positions and
widths of memberships of the jth fuzzy rule while ωj is the
weight of jth fuzzy rule in the system. The terms cij and σij
are commonly known as premise parameters while ωj denotes
consequent parameters.
In generating a FIS, the three issues of major concern are:

• How to determine the number of rules?
• How to allocate and adjust the premise parameters, e.g. center
position and width of fuzzy membership functions?
• How to determine the consequent parameters?

3. Self-generated fuzzy inference systems by EDSGFQL

3.1. ε-completeness criterion for rule generation

The ε-completeness criterion is used to determine clustering of
the input space. As pointed out by the author of (Juang, 2005), a rule
in a FIS corresponds to a cluster in the input space geometrically.
An input data with higher firing strength of a fuzzy rule means
that its spatial location is closer to the cluster center compared to
those with smaller strengths. For any input in the operating range,
if there does not exist any fuzzy rules so that the match degree
(or firing strength) is no less than ε, more fuzzy rules should be
recruited to accomplish the input space. In fuzzy applications, the
minimum value of ε is usually selected as ε = 0.5 (Er & Deng,
2004).
Once a new rule is considered, the next step is to assign

centers and widths of the corresponding MFs. The incoming
multidimensional input vector X is projected to the corresponding
one-dimensional MF for each input variable i (i = 1, 2, . . . ,N).
Assume that L MFs have been generated in the ith input variable
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