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The ratio of two probability density functions is becoming a quantity of interest these days in the
machine learning and data mining communities since it can be used for various data processing tasks
such as non-stationarity adaptation, outlier detection, and feature selection. Recently, several methods have
been developed for directly estimating the density ratio without going through density estimation and
were shown to work well in various practical problems. However, these methods still perform rather
poorly when the dimensionality of the data domain is high. In this paper, we propose to incorporate a
dimensionality reduction scheme into a density-ratio estimation procedure and experimentally show that
the estimation accuracy in high-dimensional cases can be improved.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The ratio of two probability density functions (a.k.a. the impor-
tance; see Fishman, 1996) is attracting a great deal of attention
these days in the machine learning and data mining communities
since it can be used for various statistical data processing tasks
such as covariate shift adaptation (Shimodaira, 2000; Sugiyama,
Krauledat, & Miiller, 2007; Zadrozny, 2004), transfer learn-
ing (Storkey & Sugiyama, 2007), multi-task learning (Bickel, Bogo-
jeska, Lengauer, & Scheffer, 2008), outlier detection (Hido, Tsuboi,
Kashima, Sugiyama, & Kanamori, 2008), conditional density esti-
mation (Sugiyama, Takeuchi, Suzuki, Kanamori, & Hachiya, 2009),
variable selection (Suzuki, Sugiyama, Kanamori, & Sese, 2009;
Suzuki, Sugiyama, Sese, & Kanamori, 2008), independent component
analysis (Suzuki & Sugiyama, 2009a), and supervised dimensionality
reduction (Suzuki & Sugiyama, 2009b).

A naive approach to learning the density ratio is to estimate
the two densities separately using a flexible technique such as
kernel density estimation (Hardle, Miiller, Sperlich, & Werwatz,
2004) and then take the ratio of the estimated densities. However,
this two-step approach is not reliable in practice since kernel
density estimation performs poorly in high-dimensional cases;
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furthermore, division by an estimated density tends to magnify the
estimation error.

Thus it is important to avoid density estimation when learning
the density ratio. Actually, estimating the densities is more general
than estimating the density ratio since knowing the densities
implies knowing the ratio but not vice versa. Such a statement
is sometimes referred to as Vapnik’s principle (Vapnik, 1998) and
the support vector machine would be a successful example of
this principle—instead of estimating the data generation model,
it directly models the decision boundary which is simpler and
sufficient for pattern recognition.

Following this spirit, various methods have been developed
for directly estimating the density ratio without going through
density estimation (Bickel, Briickner, & Scheffer, 2007; Cheng
& Chu, 2004; Huang, Smola, Gretton, Borgwardt, & Scholkopf,
2007; Kanamori, Hido, & Sugiyama, 2009a; Qin, 1998; Sugiyama
et al., 2008). These methods are shown to compare favorably with
naive kernel density estimation through extensive experiments.
However, these methods still perform rather poorly when the
dimensionality of the data domain is high.

The purpose of this paper is to develop a new method that can
mitigate this problem. Our basic assumption behind the proposed
method is that the difference of the two distributions (i.e., the
distributions corresponding to the denominator and numerator of
the density ratio) does not spread over the entire data domain,
but is confined in a subspace—which we refer to as the hetero-
distributional subspace. Once the hetero-distributional subspace
can be identified, the density ratio is estimated only within this
subspace, which leads to more stable and reliable estimation of
the density ratio. We experimentally show that the proposed
method—which we refer to as Direct Density-ratio estimation with
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Dimensionality reduction (D*; pronounced as ‘D-cube’)—improves
the accuracy of density ratio estimation in high-dimensional cases,
while the computational cost is still kept moderate.

The rest of this paper is organized as follows. In Section 2, we
formulate the problem of density ratio estimation and illustrate
how the density ratio could be utilized in various data processing
tasks. In Section 3, the basic idea of the proposed method D is
explained; the details of the method are explained in Sections 4-
6. Numerical examples are presented in Section 7 and concluding
remarks are given in Section 8.

2. Formulation of density ratio estimation problem

In this section, we formulate the problem of density ratio
estimation and briefly summarize possible usage of the density
ratio in various data processing tasks.

2.1. Problem formulation

Let D(C RY) be the data domain and suppose we are given

independent and identically distributed (i.i.d.) samples {x¢}!¢

from a distribution with density pqe (%) and i.i.d. samples {x]‘?” }2”1

from another distribution with density p,, (). We assume that the
first density pge () is strictly positive, i.e.,

Pae(®) >0 forallx € D.
The problem we address in this article is to estimate the density
ratio (also called the importance depending on the context)
_ Pnu(X)
Dde (X)
Nde

from samples {x}* and {x;‘”}fj{. The subscripts ‘nu’ and ‘de’
denote ‘numerator’ and ‘denominator’, respectively.

rx): (1)

2.2. Usage of density ratio in data processing

We are interested in estimating the density ratio since it is
useful in various data processing tasks. Here we briefly review
possible usage of the density ratio.

2.2.1. Covariate shift adaptation

Covariate shift (Shimodaira, 2000) is a situation in supervised
learning where the input distributions change between the train-
ing and test phases but the conditional distribution of outputs
given inputs remains unchanged. Under covariate shift, standard
learning techniques such as maximum likelihood estimation are
biased; the bias caused by covariate shift can be asymptotically
canceled by weighting the loss function according to the im-
portance (Shimodaira, 2000; Sugiyama et al., 2007; Sugiyama &
Miiller, 2005; Zadrozny, 2004). The basic idea of covariate shift
adaptation is summarized in the following importance sampling
identity:

Epuwlg@®)] = / gX)pny(x)dx

= f gX)r(X)pae (X)dx = Epy, v [g ()T (X)],

where r(x) is defined by Eq. (1). That is, the expectation of a
function g(x) over p,,(x) can be computed by the importance-
weighted expectation over pge(x). Similarly, standard model
selection criteria such as cross-validation or Akaike’s information
criterion lose their unbiasedness due to covariate shift; proper
unbiasedness can be recovered by modifying the methods based on
importance weighting (Huang et al., 2007; Qin, 2009; Shimodaira,
2000; Sugiyama et al., 2007; Sugiyama & Miiller, 2005; Zadrozny,
2004). Furthermore, the performance of active learning or the
experiment design - the training input distribution is designed by
the user to enhance the generalization performance - could also be

improved by the use of the importance (Kanamori & Shimodaira,
2003; Sugiyama, 2006; Sugiyama & Nakajima, 2009; Wiens, 2000).

Thus the importance plays a central role in covariate shift adap-
tation and density-ratio estimation methods could be utilized for
reducing the estimation bias under covariate shift. Examples of
successful real-world applications include brain-computer inter-
face (Sugiyama et al., 2007), robot control (Hachiya, Akiyama,
Sugiyama, & Peters, in press), speaker identification (Yamada,
Sugiyama, & Matsui, 2009), and natural language process-
ing (Tsuboi, Kashima, Hido, Bickel, & Sugiyama, 2009). A sim-
ilar importance-weighting idea also plays a central role in
domain adaptation (Storkey & Sugiyama, 2007) and multi-task
learning (Bickel et al., 2008).

2.2.2. Inlier-based outlier detection

Let us consider an outlier detection problem (Breunig, Kriegel,
Ng, & Sander, 2000; Scholkopf, Platt, Shawe-Taylor, Smola, &
Williamson, 2001) of finding irregular samples in a dataset
(‘evaluation dataset’) based on another dataset (‘model dataset’)
that only contains regular samples. Defining the density ratio
over the two sets of samples, we can see that the density-
ratio values for regular samples are close to one, while those
for outliers tend to be significantly deviated from one. Thus the
density-ratio value could be used as an index of the degree of
outlyingness (Hido et al., 2008). Since the evaluation dataset has
a wider support than the model dataset, we regard the evaluation
dataset as samples corresponding to pqe (%) and the model dataset
as samples corresponding to pn,(x). Then outliers tend to have
smaller density-ratio values (i.e., close to zero). As such, density-
ratio estimation methods could be employed in outlier detection
scenarios.

A similar idea could be used for change-point detection in time-
series (Brodsky & Darkhovsky, 1993; Kawahara & Sugiyama, 2009)
and two-sample problems in hypothesis testing Henkel (1979).

2.2.3. Conditional density estimation

Suppose we are given n i.i.d. paired samples {(xk, y)};_; drawn
from a joint distribution with density q(x,y). The goal is to
estimate the conditional density q(y|x). When the domain of x is
continuous, conditional density estimation is not straightforward
since a naive empirical approximation cannot be used (Bishop,
2006; Takeuchi, Nomura, & Kanamori, 2009).

In the context of density ratio estimation, let us regard
{(®k, ¥x)};_; as samples corresponding to the numerator of
the density ratio and {x,};_; as samples corresponding to the
denominator of the density ratio, i.e., we consider the density ratio
defined by

qx.y)
qx)

where q(x) is the marginal density of x. Thus a density-ratio
estimation method directly gives an estimate of the conditional
density.

rix,y) = =qy|x),

2.2.4. Mutual information estimation

Suppose we are given n i.i.d. paired samples {(xx, yi)};_; drawn
from a joint distribution with density q(x, y). Let us denote the
marginal densities of ¥ and y by q(x) and q(y), respectively. Then
mutual information I(X, Y) between random variables X and Y is
defined by

qx,y)
I(X,Y) = ,¥) log — = dxdy,
X,Y) f/q(x y) log 1®a0) xdy

which plays a central role in information theory (Cover & Thomas,
1991).
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