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a b s t r a c t

Several neurological diseases (e.g. essential tremor and Parkinson’s disease) are related to pathologically
enhanced synchronization of bursting neurons. Suppression of these synchronized rhythms has potential
implications in electrical deep-brain stimulation research. We consider a simplified model of a neuronal
network where the local dynamics presents a bursting timescale, and the connection architecture
displays the scale-free property (power-law distribution of connectivity). The networks exhibit collective
oscillations in the form of synchronized bursting rhythms, without affecting the fast timescale dynamics.
We investigate the suppression of these synchronized oscillations using a feedback control in the
form of a time-delayed signal. We located domains of bursting synchronization suppression in terms
of perturbation strength and time delay, and present computational evidence that synchronization
suppression is easier in scale-free networks than in the more commonly studied global (mean-field)
networks.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Complex networks are found in many scientific and techno-
logical applications, and a great deal of effort has been spent on
studying such systems using tools derived from areas like statis-
tical mechanics, graph theory, and nonlinear dynamics (Borhnoldt
& Schuster, 2003). In these complex networks the nodes represent
individuals or organizations, the links standing for their mutual in-
teractions, according to a specified connection architecture (Albert
& Barabási, 2002; Dorogovtsev&Mendes, 2002). A class of complex
networks which has been intensively studied is the scale-free net-
work, for which the connectivity – the number of connections for
each node – presents a statistical power-law dependence (Barabási
& Albert, 1999). If P(k)dk denotes the probability of finding a node
with connectivity between k and k+ dk, for scale-free lattices one
has P(k) ∼ k−γ where γ > 1. As a consequence, in scale-free
networks a few nodes are connected with a large number of other
ones, whereas most of the nodes are connected with a small num-
ber of network units.
This power-law distribution of connectivities comes from

two mechanisms (Barabási & Albert, 1999): (i) networks expand
continuously by the addition of new nodes; (ii) new nodes
attach preferentially to already well-connected nodes. As those
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mechanisms are common tomany networks of physical, biological,
and social interest, it is not surprising that a large number of
networks have been found to exhibit a scale-free connectivity.
Some examples are the World Wide Web (Barabási, Albert, &
Jeong, 2000; Broder et al., 2000; Pastor-Satorras, Vázquez, &
Vespignani, 2001), earthquakes (Baiesi & Paczuski, 2004), large
computer programs (de Moura, Lai, & Motter, 2003), epidemic
spreading (Pastor-Satorras & Vespignani, 2001), human sexual
contacts (Lijeros, Edling, Amaral, Stanley, & Aberg, 2001), protein
domain distributions (Wuchty, 2001), cellular metabolic chains
(Barabási & Oltvai, 2004; Jeong, Tombor, Albert, Oltvai, & Barabási,
2000; Jeong, Mason, Barabási, & Oltvai, 2001), and human brain
functional networks (Equiluz, Chialvo, Cecchi, Buliki, & Apkarian,
2005).
Scale-free neural networks have attracted a lot of attention,

since the relative sparseness of their coupling architecture reduces
the memory needed to store a given amount of information, as
well as the computational effort needed to provide certain tasks
(Perotti, Tamarit, & Cannas, 2006; Stauffer, Aharony, da Fontoura
Costa, & Adler, 2003). Recently it has been found that, for stochastic
neural networks the large-scale behavior admits a description in
terms of a winner-take-all type dynamics, in such a way that the
graph of charge transfers has scale-free properties with a power-
law exponent γ = 2.0 (Piekniewski & Schreiber, 2008). Moreover,
recent experimental evidence suggests that some brain activities
can be assigned to scale-free networks, as revealed by functional
magnetic resonance imaging, where the scaling exponent γ has
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been found to take on values between 2.0 and 2.2, with an average
connectivity of 〈k〉 ≈ 4 (Chialvo, 2004; Equiluz et al., 2005;
Sporns, Chialvo, Kaiser, & Hilgetag, 2004). The connection between
the large-scale functional networks discussed in those works and
a small-scale structural network of coupled neurons has been
recently investigated by Hagmann et al. (2008) and Honey et al.
(2009).
Moreover, a recent study by van der Heuvel, Stam, Boersma,

and Hulshoff Pol (2008) using high-definition functional magnetic
resonance imaging suggests that connectivity graphs formed out
of all cortical and sub-cortical voxels have both small-world and
scale-free properties, the latter having a scaling exponent around
2.0. On the other hand, Achard, Salvador, Whitcher, Suckling, and
Bullmore (2006) have found that the human functional network
is dominated by a neocortical core of highly connected hub-
like neurons which do not obey properly a scale-free but rather
have an exponentially truncated power-law degree distribution.
Humphries, Gurney, and Prescott (2006), argue that the medial
reticular formation (RF) of the brainstem is characterized by
a neural network exhibiting small-world, but not scale-free
properties.
One of the collective phenomena which arise from the network

coupling is the synchronization of periodic, noisy, or even
chaotic oscillations taking place at each network unit (Pikovsky,
Rosenblum, & Kurths, 2003). Synchronization of oscillations are
an important feature of network-coupled physical and biological
systems, like arrays of coupled Josephson junctions (Wiesenfeld,
Colet, & Strogatz, 1996) lasers (Roy & Thornbert Jt, 1994), and
flashing fireflies (Mirollo & Strogatz, 1990). We shall be concerned
particularly with neuronal networks where each unit receives
excitatory inputs from a few thousands of other neurons (Bear,
Connors, & Paradiso, 2002). The transition from inactive to active
neural networks with scale-free architecture has been found to
be a global bifurcation (López-Ruiz, Moreno, Pacheco, Boccaletti,
& Hwang, 2007).
Neuronal activity (i.e., the evolution of the action potential)

in cortical circuits often presents two distinct timescales: (i) a
fast time scale characterized by repetitive spiking; and (ii) a slow
timescale with bursting activity, where neuron activity alternates
between a quiescent state and spiking trains (Belykh, de Lange,
& Hasler, 2005). A characteristic feature of cortical circuits is
that they produce synchronized bursting, while its individual
neurons, when isolated, show irregular bursts, in such a way that
synchronized bursting is a characteristic effect of the coupling
neural architecture (Thomson, 2000).
The presence of synchronized rhythmshas been experimentally

observed in electroencephalograph recordings of electrical activity
in the brain, in the form of an oscillatory behavior generated by
the correlated discharge of populations of neurons across cerebral
cortex. The behavioral state alters the amplitudes and frequencies
of these oscillations, such that high frequency and low amplitude
rhythms tend to occur during arousal and attention; whereas low
frequency and high amplitude activity occurs during slow-wave
sleep (Thomson, 2000).
Moreover, some types of synchronization of bursting neurons

are thought to play a key role in Parkinson’s disease, essential
tremor, and epilepsies (Milton & Jung, 2003). As an example, the
synchronous firing of neurons located in the thalamus and basal
ganglia appears to cause resting tremor in Parkinson’s disease, in
such a way that the firing frequency is in the same range (3–6 Hz)
of the tremor itself (Maistrenko, Popovych, & Tass, 2005). The
peripheral shaking results from the activation of cortical areas due
to the existence of a cluster of synchronously firing neurons that
acts as a pacemaker (Nini, Feingold, Slovin, & Bergman, 1995).
Hence a possible way to control pathological rhythms would
be to suppress the synchronized behavior. This can be obtained

through application of an external high frequency (>100 Hz)
electrical signal, and it constitutes the main goal of the deep-brain
stimulation technique (Benabid et al., 1991).
Deep-brain stimulation consists of the application of depth

electrodes implanted in target areas of the brain like the thalamic
ventralis intermedius nucleus or the subthalamic nucleus (Benabid
et al., 1991). The overall effects of deep-brain stimulations are
similar to those produced by tissue lesioning and have proved to
be effective in suppression of the activity of the pacemaker-like
cluster of synchronously firing neurons, so achieving a suppression
of the peripheral tremor (Blond et al., 1992). While most progress
in this field has come from empirical observations made during
stereotaxic neurosurgery, methods of nonlinear dynamics are
beginning to be applied to understand this suppression behavior.
Rosenblum and Pikowsky have proposed a feedback procedure
to control pathological brain rhythms through suppression of the
synchronized behavior by a delayed feedback signal (Rosenblum
& Pikowsky, 2004a). This strategy has been successfully applied
to globally coupled networks, in which each unit interacts with
all other neurons in a mean-field kind of coupling (Rosenblum &
Pikowsky, 2004b).
In this letter we analyze the control of collective synchronized

oscillations using a time-delayed feedback control signal in a scale-
free network of bursting neurons, whose individual dynamics
is governed by a two-dimensional dissipative map proposed
by Rulkov (2001), see also Rulkov, Timofeev, and Bazhenov
(2004). The latter describes the essentials of neuron bursting
activitywith some advantages overmore sophisticatedmodels like
Hindmarsh–Rose equations (Dayan & Abbott, 2001), such as the
use of less computer time, what makes it suitable for numerical
simulations using a large number of neurons. We investigated
the control parameter regimes for which there occurs bursting
synchronization, and the effect of varying coupling parameters.
We located domains of bursting synchronization suppression
in terms of perturbation strength and time delay, and present
computational evidence that synchronization suppression is easier
in scale-free networks than in the more commonly studied global
(mean-field) networks.
This paper is organized as follows: Section 2 deals with the

model we use to describe neural networks, using a discrete map to
simulate the local neuronal dynamics and a network architecture
displaying the scale-free property. Section 3 discusses the ideas
behind the stimulation technique using a delayed feedback signal,
and how it is able bursting synchronization in the network. Our
numerical results are shown in Section 4, as well as a discussion
of some issues related to the influence of the particular aspects
of the model we are using, as its parameters. Section 5 describes,
in a semi-quantitative setting, the transition to the bursting
synchronization, using the well-known Kuramoto model as a
paradigm. The last Section is devoted to our conclusions.

2. Network model

2.1. Local dynamics

In the neuron models we consider in this paper, the time
evolution of the action potential is supposed to exhibit two
timescales. The fast timescale is related to the spiking neuron
activity, whereas the slow timescale appears in the form of bursts
characterized by the repetition of spikes (Dhamala, Jirsa, & Ding,
2004). Mathematicalmodels of such bursting neuronsmay be built
upon systems of three or more ordinary differential equations, like
themodels proposed by Hodgkin and Huxley (1952) or Hindmarch
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