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Off-policy reinforcement learning is aimed at efficiently using data samples gathered from a policy that
is different from the currently optimized policy. A common approach is to use importance sampling
techniques for compensating for the bias of value function estimators caused by the difference between
the data-sampling policy and the target policy. However, existing off-policy methods often do not take the
variance of the value function estimators explicitly into account and therefore their performance tends
to be unstable. To cope with this problem, we propose using an adaptive importance sampling technique
which allows us to actively control the trade-off between bias and variance. We further provide a method
for optimally determining the trade-off parameter based on a variant of cross-validation. We demonstrate
the usefulness of the proposed approach through simulations.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Policy iteration is a reinforcement learning setup where the
optimal policy is obtained by iteratively performing policy
evaluation and improvement steps (Bertsekas & Tsitsiklis, 1996;
Sutton & Barto, 1998). When policies are updated, many popular
policy iteration methods require the user to gather new samples
following the updated policy, and the new samples are used for
value function approximation. However, this approach is inefficient
particularly when the sampling cost is high and it would be more
cost-efficient if we could reuse the data collected in the past. A
situation where the sampling policy (a policy used for gathering
data samples) and the current policy are different is called off-
policy reinforcement learning (Sutton & Barto, 1998).

In the off-policy setup, simply employing a standard policy
iteration method such as least-squares policy iteration (Lagoudakis
& Parr, 2003) does not lead to the optimal policy as the sampling
policy can introduce bias into value function approximation.
This distribution mismatch problem can be eased by the use of
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importance sampling techniques (Fishman, 1996), which cancel
the bias asymptotically. However, the approximation error is
not necessarily small when the bias is reduced by importance
sampling; the variance of estimators also needs to be taken into
account since the approximation error is the sum of squared bias
and variance. Due to large variance, existing importance sampling
techniques tend to be unstable (Precup, Sutton, & Singh, 2000;
Sutton & Barto, 1998).

To overcome the instability problem, we propose using an adap-
tive importance sampling technique used in statistics (Shimodaira,
2000). The proposed adaptive method, which smoothly bridges the
ordinary estimator and importance-weighted estimator, allows us
to control the trade-off between bias and variance. Thus, given
that the trade-off parameter is determined carefully, the optimal
performance can be achieved in terms of both bias and variance.
However, the optimal value of the trade-off parameter is heav-
ily dependent on data samples and policies, and therefore using
a pre-determined parameter value may not be always effective in
practice.

For optimally choosing the value of the trade-off parameter, we
propose using an automatic model selection method based on a
variant of cross-validation (Sugiyama, Krauledat, & Miiller, 2007).
The method called importance-weighted cross-validation enables us
to estimate the approximation error of value functions in an almost
unbiased manner even under off-policy situations. Thus we can
adaptively choose the trade-off parameter based on data samples
at hand. We demonstrate the usefulness of the proposed approach
through simulations.
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2. Background and notation

In this section, we review how Markov decision problems can
be solved using policy iteration based on value functions.

2.1. Markov decision problems

Let us consider a Markov decision problem (MDP) specified by
(5? ‘A” PT7 R7 ]/),
where

e 4§ is a set of states,

e A is a set of actions,

e Pr(s'|s,a) (e [0, 1]) is the transition probability-density from
state s to next state s’ when action a is taken,

e R(s,a,s’) (¢ R) is a reward for transition from s to s’ by taking
action q,

e y € (0, 1] is the discount factor for future rewards.

Let m(als) € [0,1] be a stochastic policy which is the
conditional probability density of taking action a given state s.
The state-action value function Q" (s, a) € R for policy 7 is the
expected discounted sum of rewards the agent will receive when
taking action a in state s and following policy 7 thereafter, i.e.,

51=S,GIZG:|7

where E; p, denotes the expectation over {s,, a,};2, following
70 (Gn|Sn) and Pr(Sp1(Sn, n)-

The goal of reinforcement learning is to obtain the policy which
maximizes the sum of future rewards; the optimal policy can be
expressed'as

o0
Q= R {Z y"'R(Sn, Gn, Sn1)
T,

n=1

7*(als) = 8(a — argmax Q*(s, d)),

where §(-) is the Dirac delta function and Q*(s, a) is the optimal
state—action value function defined by

Q*(s,a) = max Q™" (s, a).

Q7 (s, a) can be expressed as the following recurrent form called
the Bellman equation (Sutton & Barto, 1998):

Q"(s.a)=Rs,.)+y E E [Q"(s.d)],
Pr(s'ls,a) 7 (d'ls)

Vs € 8,Va € A, (1

where R(s, a) is the expected reward function when the agent takes
action a in state s:
Rs,a)= E [RGs,a,5)].

Pr(s'ls,a)
Ep,(s'js,a) denotes the conditional expectation of s’ over Pr(s'[s, a)
givensand a. E, s, denotes the conditional expectation of a’ over
7 (d'|s’) givens'.

2.2. Policy iteration

The computation of the value function Q7 (s, a) is called policy
evaluation. Using Q™ (s, a), we can find a better policy 7'(a|s) by
7' (als) = 8(a — argmax Q7 (s, a')).

a/
This is called (greedy) policy improvement. It is known that
repeating policy evaluation and policy improvement results in the
optimal policy 77*(a|s) (Sutton & Barto, 1998). This entire process
is called policy iteration:

E I E I E I
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1 We assume that given state s there is only one action maximizing the optimal
value function Q*(s, a).

where 77 is an initial policy, and E and I indicate policy evaluation
and improvement steps respectively. For technical reasons, we
assume that all policies are strictly positive (i.e., all actions have
non-zero probability densities). In order to guarantee this, we use
policy improvement which generates explorative policies such as
the Gibbs policy and the e-greedy policy. In the case of the Gibbs
policy,

exp(Q7 (s, a)/7)
[, exp(Q7(s,a)/7) da’’

where 7 is a positive parameter which determines the randomness
of the new policy 7’. In the case of the e-greedy policy,

(2)

7'(als) =

ifa = a*,
otherwise,

1—€e+4€/|A|

e/ |l (3)

7'(als) = {

where

a* = argmax Q” (s, a),
a
and € € (0, 1] determines how stochastic the new policy 7’ is.

2.3. Value function approximation

Although policy iteration is guaranteed to produce the optimal
policy, it is often computationally intractable since the number of
state—action pairs | 8| x | 4| is very large; | 8| or | 4| becomes infinite
when the state space or action space is continuous. To overcome
this problem, the authors of the references Lagoudakis and Parr
(2003), Precup, Sutton, and Dasgupta (2001) and Sutton and Barto
(1998) proposed to approximate the state-action value function
Q7 (s, a) using the following linear model:

B
Q. a;0) =) Oon(s, ) =075, ),
b=1

where

é(s, ) = ($1(5, ), ¢2(5, ), ..., pp(s, @) |

are the fixed basis functions, T denotes the transpose, B is the
number of basis functions, and

0=(01,6...,08)"

are model parameters. Note that B is usually chosen to be much
smaller than |§| x |-|. For N-step transitions, we ideally want
to learn the parameters 6 so that the approximation error is
minimized:

. 1 N = . T 2
mampl,jIE:’PT |:N Z (Q7 (sns @n: 0) — Q7 (50, ) ] .

n=1

where Ep, - p, denotes the expectation over {s, an}’,;’=1 following
the initial-state probability density P;(s), the policy 7 (a,|s,), and
the transition probability density Pr(Sp+1|Sn, an).

A fundamental problem of the above formulation is that
the target function Q7 (s, a) cannot be observed directly. To
cope with this problem, we use the square of the Bellman
residual (Lagoudakis & Parr, 2003; Schoknecht, 2003) as

0" = argmin G,
0

1 N
6= B, [N ;g@n, n; 0)} ,
% (4)
g(s,a;0) = (Q”(s, a; 0) — R(s, a)

-y E E
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[Q7(s, d; 0)]) ,
Pr(s'|s,a) (d'|s)
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