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a b s t r a c t

This paper is devoted to the analysis of a discrete-time-delayedHopfield-type neural network of pneurons
with ring architecture. The stability domain of the null solution is found, the values of the characteristic
parameter for which bifurcations occur at the origin are identified and the existence of Fold/Cusp,
Neimark–Sacker and Flip bifurcations is proved. These bifurcations are analyzed by applying the center
manifold theorem and the normal form theory. It is proved that resonant 1:3 and 1:4 bifurcations may
also be present. It is shown that the dynamics in a neighborhood of the null solution become more and
more complex as the characteristic parameter grows in magnitude and passes through the bifurcation
values. A theoretical proof is given for the occurrence of Marotto’s chaotic behavior, if the magnitudes
of the interconnection coefficients are large enough and at least one of the activation functions has two
simple real roots.
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1. Introduction

Since the pioneering work of Hopfield (1984), the dynamics of
continuous-time Hopfield neural networks have been thoroughly
analyzed. However, discrete-time counterparts of continuous-type
neural networks have only been in the spotlight since 2000, even
though they are essential when implementing continuous-time
neural networks for practical problems such as image processing,
pattern recognition and computer simulation.
In recent years, the theory of discrete-time dynamic systems

has assumed a greater importance as a well-deserved discipline.
Many results in the theory of difference equations have been ob-
tained as natural discrete analogs of corresponding results from
the theory of differential equations. Nevertheless, the theory of dif-
ference equations is a lot richer than the corresponding theory of
differential equations. For example, a simple difference equa-
tion resulting from a first order differential equation may exhibit
chaotic behavior which can only happen for higher order differen-
tial equations. This is the reasonwhy, when studying discrete-time
counterparts of continuous neural networks (Mohamad & Gopal-
samy, 2000), important differences and more complicated behav-
ior may also be revealed.
The analysis of the dynamics of neural networks focuses on

three directions: discovering equilibrium states and periodic or
quasi-periodic solutions (of fundamental importance in biological
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and artificial systems, as they are associated with central
pattern generators (Pasemann, Hild, & Zahedi, 2003)), establishing
stability properties and bifurcations (leading to the discovery of
periodic solutions), and identifying chaotic behavior (with valuable
applications to practical problems such as optimization (Chen
& Aihara, 1995, 1997, 2001; Chen & Shih, 2002), associative
memory (Adachi & Aihara, 1997) and cryptography (Yu & Cao,
2006)).
We refer to Guo, Huang, and Wang (2004) and Guo and

Huang (2004) for the study of the existence of periodic solutions
of discrete-time Hopfield neural networks with delays and the
investigation of exponential stability properties.
In Yuan, Hu, and Huang (2004, 2005) and in the most general

case, in He and Cao (2007), a bifurcation analysis of two-
dimensional discrete neural networks without delays has been
undertaken. In Zhang and Zheng (2005, 2007), the bifurcation
phenomena have been studied, for the case of two- and n-
dimensional discrete neural network models with multi-delays
obtained by applying the Euler method to a continuous-time
Hopfield neural network with no self-connections. In Guo, Tang,
and Huang (2008) and Kaslik and Balint (2007, 2008b, 2009), a
bifurcation analysis for discrete-time Hopfield neural networks of
two neurons with self-connections has been presented, in the case
of a single delay, two, three and four delays.
The latest results concerning chaotic dynamics in classical

discrete-time-delayed neural networks of two neurons have been
reported by Huang and Zou (2005) and Kaslik and Balint (2008a).
Ring architectures have been found in a variety of neural

structures, such as hippocampus, cerebellum, neocortex, and
even in chemistry and electrical engineering. The real cortical
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connectivity pattern is extremely sparse: most connections
are between nearby cells, and long-range connections become
progressively more infrequent. Hence, the ring represents a
simplified connectivity structure, and ring neural networks are
studied to gain insight into the mechanisms underlying the
behavior of recurrent networks (Hirsch, 1989).
Different aspects (stability, bifurcations, patterns of nonlinear

oscillations, nonlinearwaves, synchronization) of continuous-time
dynamics of rings of neurons with delays have been studied
by Baldi and Atiya (1994), Campbell, Ruan, and Wei (1999), Guo
(2005), Guo and Huang (2003), Guo and Huang (2006), Guo and
Huang (2007a, 2007b), Bungay and Campbell (2007), Campbell,
Ncube, and Wu (2006), Lu and Guo (2008), Wei and Jiang (2006)
and Wei and Zhang (2008). Most of these studies have concerned
lower dimensional networks (of three or four neurons) and/or
systems with a single time delay.
Recently, Xu (2008) obtained delay-dependent conditions for

the global asymptotic stability of the equilibrium of a continuous-
time bidirectional delayed ring neural network, using Lyapunov’s
method, as well as conditions for the global existence of periodic
solutions. The same paper also presents a numerical investigation
of two possible routes towards chaotic behavior (via period-
doubling bifurcations and via bifurcations from the quasi-periodic
solutions). However, there is no known result concerning a
theoretical proof of chaotic behavior in continuous-time ring
neural networks.
Studying discrete-timedynamics of neural rings is a challenging

task, which, to the best of our knowledge, has not yet been
explored. This is the reason why, in this paper, we extend the
results obtained for two-dimensional neural networks (Kaslik
& Balint, 2008a) to discrete-time-delayed Hopfield-type neural
networks of p ≥ 2 neurons with ring architecture, described by:
x1(n+ 1) = ax1(n)+ T1g1(xp(n− kp))
x2(n+ 1) = ax2(n)+ T2g2(x1(n− k1))
· · ·

xp(n+ 1) = axp(n)+ Tpgp(xp−1(n− kp−1))
∀n ≥ max(k1, k2, . . . , kp).

(1)

In this system, a ∈ (0, 1) is the internal decay of the neurons, Ti
are the interconnection coefficients, gi : R → R represent the
neuron input–output activations and ki ≥ 0 represent the delays.
The activation functions gi are of class C3 and gi(0) = 0.
System (1) is the discrete-time counterpart of the continuous-

time ring neural network studied by Wei and Zhang (2008).
Throughout the paper, we will denote bi = Tig ′i (0), b =

b1b2 . . . bp and k = k1 + k2 + · · · + kp. Moreover, the notation
j = a, b is used to express that j ∈ {a, a+1, . . . , b} (where a, b ∈ N,
a < b).
The aim of this paper is to present a complete stability and

bifurcation analysis of system (1) in a neighborhood of the null
solution, and to theoretically prove that chaotic behavior occurs
when the absolute values of the interconnection coefficients are
large enough and at least one of the activation functions has two
simple real roots.

2. Stability and bifurcation results

The characteristic equation of the linearized system of (1) at
the origin (null solution) is obtained by searching for nontrivial
solutions of the form xi(n) = cizn, i = 1, p for the linearized
system. This leads to the following characteristic equation:

zk(z − a)p = b. (2)

We denote by DS the domain of stability of the null solution of (1),
i.e. the set of the values of parameter b for which the null solution
is asymptotically stable.

Proposition 1. z = eiθ , θ ∈ [0, π] is a root of the characteristic
equation (2) if and only if one of the following hold:
• θ = θ0 = 0 and b = b0 = (1− a)p
• θ = θj = h−1(jπ) and b = bj = (−1)j(1+ a2 − 2a cos θj)p/2 for
j = 1, p+ k− 1
• θ = θp+k = π and b = (−1)p+k(1+ a)p

where h : (0, π)→ (0, (p+ k)π) is the increasing bijective function
defined by h(t) = k t + p cot−1( cos t−asin t ), where cot

−1 denotes the
inverse of the cotangent function restricted to the interval (0, π).

Proof. Suppose that z = eiθ is a root of the characteristic equation
(2). Passing to the imaginary part in Eq. (2) it can be easily seen that
there exists j ∈ {0, 1, . . . , p + k} such that θ = θj. Passing to the
real part in Eq. (2), we obtain b = bj. �

Lemma 2. The values bj given by Proposition 1 satisfy the following
relations:
i. |b0| < |b1| < |b2| < · · · < |bp+k|
ii. sign (bj) = (−1)j for any j = 0, p+ k
iii. if k is even then bp+k−1 < bp+k−3 < · · · < b3 < b1 < 0 < b0 <
b2 < · · · < bp+k−2 < bp+k

iv. if k is odd then bp+k < bp+k−2 < · · · < b3 < b1 < 0 < b0 <
b2 < · · · < bp+k−3 < bp+k−1.

Proof. These properties follow directly from the fact that b = bj =
(−1)j(1+ a2 − 2a cos θj)p/2 for j = 0, p+ k. �

Lemma 3. Let j ∈ {0, 1, . . . , k + p} and the root z(b) of the
characteristic equation (2) satisfying z(bj) = z? = eiθj . Then
(−1)j d|z|db |b=bj > 0.

Proof. Indeed, denoting P(z) = zk−1(z−a)p−1[(p+k)z−ak], one
has:

d|z|2

db
= z̄
dz
db
+ z
dz̄
db
=
2Re(zP(z))
|P(z)|2

.

Therefore

d|z|2

db

∣∣∣∣
b=bj

=
2Re(z?P(z?))
|P(z?)|2

=
bj

|P(z?)|2

(
k+ p

1− a cos θj
1+ a2 − 2a cos θj

)
.

Hence, sign
(
d|z|
db |b=bj

)
= sign (bj) = (−1)j, which completes the

proof. �

Remark 4. According to Lemma 3, the number σ(b) of the
multipliers of system (1) outside the unit circle, regarded as a
function of the parameter b, is increasing on the interval [0,∞)
and decreasing on the interval (−∞, 0]. One has:

σ(b) =



p+ k, b ∈ (−∞,min(bp+k−1, bp+k))

2j, b ∈ [b2j+1, b2j−1), j = 1,
[
p+ k− 1
2

]
0, b ∈ [b1, b0]

2j+ 1, b ∈ (b2j, b2j+2], j = 0,
[
p+ k− 2
2

]
p+ k, b ∈ (max(bp+k−1, bp+k),∞).

Proposition 5. The null solution of (1) is asymptotically stable if and
only if

b ∈ DS = (b1, b0).

At the boundary of the stability domain DS , the following bifurcation
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