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To enhance the performance and overcome the heavy computational complexity of recurrent neural
networks (RNN), a novel nonlinear adaptive filter based on a pipelined second-order Volterra recurrent
neural network (PSOVRNN) is proposed in this paper. A modified real-time recurrent learning (RTRL)
algorithm of the proposed filter is derived in much more detail. The PSOVRNN comprises of a number
of simple small-scale second-order Volterra recurrent neural network (SOVRNN) modules. In contrast
to the standard RNN, these modules of a PSOVRNN can be performed simultaneously in a pipelined
parallelism fashion, which can lead to a significant improvement in its total computational efficiency.
Moreover, since each module of the PSOVRNN is a SOVRNN in which nonlinearity is introduced by the
recursive second-order Volterra (RSOV) expansion, its performance can be further improved. Computer
simulations have demonstrated that the PSOVRNN performs better than the pipelined recurrent neural
network (PRNN) and RNN for nonlinear colored signals prediction and nonlinear channel equalization.
However, the superiority of the PSOVRNN over the PRNN is at the cost of increasing computational
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complexity due to the introduced nonlinear expansion of each module.
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1. Introduction

Since many signals (such as nonlinear colored signals, speech
signals, distortion in nonlinear channels in communication sys-
tems, etc.) are generated from an inherently nonlinear physical
mechanism and have statistically nonstationary properties, linear
adaptive techniques-based the linear model do not perform well.
Therefore, the nonlinearities must be accounted for in the design
of adaptive filters. Because the prime advantages of neural net-
works are: their ability to learn based on optimization of an ap-
propriate error function and their excellent performance for the
approximation of nonlinear functions, different types of adaptive
nonlinear filters-based neural networks have been proposed and
applied in many papers in the literature (Mandic, 2001; Narendra
& Parthasarathy, 1990).

Among adaptive nonlinear filter-based neural networks, re-
current neural networks (RNNs), widely applied in nonlinear
signal processing fields, have shown better performance than feed-
forward neural networks (Mandic, 2001). The RNN is a dynamic
network due to its feedback in nature, while feedforward neu-
ral networks with multilayer architecture represent static non-
linear models (Narendra & Parthasarathy, 1990). Moreover, RNNs
can yield smaller structures than nonrecursive neural networks in
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the same way that infinite impulse response (IIR) filters can re-
place longer finite impulse response (FIR) filters. Therefore, the lo-
cal/global recurrence and internal/external feedback of the RNNs
enable them to acquire accurately nonlinear models, which make
it suitable for nonlinear prediction, modeling and channel equal-
ization (Choi, Antonio, Lima, & Haykin, 2005; Choi, Bouchard, &
Yeap, 2005; Connor, Martin, & Atlas, 1994; Hacioglu, 1997; Han,
Xi, Xu, & Yin, 2004; Kechriotis & Manolakos, 1994; Kechriotis, Zer-
vas, & Manolakos, 1994; Mandic, 2001; Parisi, Claudio, Orlandi, &
Rao, 1997; Williams & Zipser, 1989). In 1989, Williams and Zipser
firstly proposed a fully connected RNN trained by a real-time recur-
rent learning (RTRL) algorithm (Williams & Zipser, 1989). Follow-
ing their work, a robust learning algorithm proposed is applied to
a RNN for approximating the NARMA processes in 1994. Although
these algorithms-based gradient descents exhibit the lack of the
instability, RNNs still show more powerful performance than feed-
forward neural networks (Connor et al., 1994). Kechriotis etc. have
successfully applied the RNN to solve the nonlinear channel equal-
ization problem (Kechriotis et al., 1994). Kechriotis and Manolakos
(1994) presented the fully RNN with complex weights. Hacioglu
(1997) introduced a method of extending RNN equalizers to M-
PAM signal reconstruction in the presence of ISI and AWGN. The
literature (Parisi et al., 1997) describes a novel approach to learn-
ing in a RNN that exploits the principle of discriminative learning,
minimizing an error functional that is a direct measure of the clas-
sification error. Its main feature is a higher speed of convergence.
In 2004, a new methodology to model and predict chaotic time se-
ries based on a new recurrent predictor neural network is studied
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in Han et al. (2004). Recently, an extended Kalman filter (EKF) and
unscented Kalman filter (UKF) algorithms for the RNN equalizer
introduced in Choi et al. (2005) and Choi et al. (2005) have been
successfully applied in time-variant and time-invariant nonlinear
channel equalization. Although many types of adaptive nonlinear
filter based on the RNN using the various algorithms can achieve a
fast convergence speed, good tracking performance and highly fil-
tered accuracy, the heavy computational complexity can severely
limit the RNN in implementation.

To reduce the heavy computational burdens of a RNN, a
novel computationally efficient modular nonlinear filter using
PRNN was presented by Haykin and Li (1995). The design of
such a modular network is based on the principle of divide
and conquers, that is, a complex RNN with a large number of
neurons can be divided into a number of simpler small-scale
RNN models (Haykin & Li, 1995; Li & Haykin, 1993). Since those
modules of PRNN can be performed simultaneously in a pipelined
parallelism fashion, this results in a significant improvement in
its total computational efficiency. Moreover, due to the modular
nesting, the performance can be improved to a certain extent.
Therefore, the PRNN has been successfully used for a variety
of applications where complexity and nonlinearity pose major
problems, including speech processing (Haykin & Li, 1995), ATM
traffic modeling (Chang & Hu, 1997), and communications (Chang
& Hu, 1999; Chen, Chang, & Hsieh, 2006). In 1998, an extended
recursive least squares (ERLS) learning algorithm of PRNN was
introduced to improve the performance of adaptive speech
prediction (Baltersee & Chambers, 1998). Recently, for the optimal
selection of the parameters of PRNN, the authors elaborate on
the cost function used for learning, suggesting different forms
of module weighting factor (Chen, Gautama, & Mandic, 2008;
Mandic & Chambers, 2000, 1999). For complex-valued nonlinear
and nonstationary signals, a complex-valued nonlinear adaptive
filter using a pipelined recurrent neural network (CPRNN) is
presented (Goh & Mandic, 2005). Considering the pipelined
architecture and the learning capabilities of a recurrent fuzzy
neural network (RFNN), a class of pipelined recurrent fuzzy
neural networks (PRFNN) proposed for nonlinear adaptive speech
prediction can provide considerably better performance compared
to PRNN (Stavrakoudis & Theocharis, 2007). Nevertheless, PRNN
and RNN are both confronted with the same problems: they utilize
a linear input and first-order recurrent term only while they fail
to utilize the high-order terms of inputs. Hence, the performance
of the PRNN and the RNN is limited by a nonlinear processing
capability and should be further enhanced.

It is well known that the polynomial filter may be interpreted
as an extension version of linear filter to the nonlinear case.
Moreover, the key attractive feature is that the truncated Volterra
filter can deal with a general class of nonlinear systems, while
its output is still linear with respect to various higher order
kernels or impulse responses. The major drawback of using
the Volterra filter is that its computational complexity is much
higher than the linear adaptive filter since the adaptive Volterra
filter requires a large number of multidimensional coefficients to
accurately model nonlinear systems (Mathews, 1991). Moreover,
the computational complexity increases exponentially as the
order of the polynomials. To overcome the limitation of the
computational complexity, only the second order Volterra (SOV)
filter and third-order Volterra (TOV) filter can be used for
implementation in practice. However, the adaptive SOV filter
cannot accurately model the systems that have strong nonlinearity
(such as strongly saturated signals) with a reasonable filter length,
and the TOV filter can improve the nonlinear processing capability
to a certain extent at the cost of more computational complexity.
The adaptive recursive second order Volterra (RSOV) filter, which is
a nonlinear extension of the IIR filter, can be seen as an alternative

solution to higher-order Volterra filters when the nonlinearities
produced by the system are directly dependent on the lower ones,
in keeping a second-order computational burden. Moreover, the
adaptive RSOV filter can model nonlinear systems accurately with
a lower order than the higher Volterra filters that use only the
feedforward coefficients (Roy, Stewart, & Durrani, 1996a, 1996b).

As a consequence, by combining the pipelined architecture type
of the PRNN and the characteristics of RSOV, a novel adaptive
nonlinear filter using the PSOVRNN is presented to improve the
performance and overcome the heavy computational complexity
of the RNN in this paper. Since each module of the PSOVRNN is
a SOVRNN in which nonlinearity is introduced by enhanced the
input pattern with the RSOV expansion (Roy et al., 1996a, 1996b),
the nonlinear processing capability of the PSOVRNN is enhanced.
At the same time, in contrast to the RNN, the computational
complexity is further reduced by using pipelined architecture.

This paper is organized as follows. The RNN is introduced in
Section 2. Section 3 presents the proposed novel adaptive nonlin-
ear filter. The adaptive algorithms of the PSOVRNN are deduced in
Section 4. In Section 5, the convergence performance and stabil-
ity conditions are discussed. The computational complexity of the
PSOVRNN is analyzed in Section 6. Section 7 provides the effective-
ness of the proposed nonlinear filter illustrated by comparing with
the PRNN and RNN filters. Section 8 is devoted to a brief summary
and discussion.

2. The recurrent neural network

A fully connected recurrent neural network, consisting of g
neurons with p external inputs and q feedback connections, is
depicted in Fig. 1. Let y;(n) denote the output of a neuron | =
1,...,qattimeindexnands(n) = [x(n — 1), ..., x(n — p)]" the
(1 x p) external input vector. Then the overall input P(n) to the
network represents a concatenation of vectors s(n), the bias input
landy(n) =[yi(n—1),...,y4(n — 1)]" is given by

P(n) = [Pi(n),..., Pp+q—0—1(n)]T
= [s"(n), 1,y"(m)]"

=[x(n—1),...,x(n—p), L,yi(n— 1), ..., y,(n — DI (1)

where ()T denotes the vector transpose operator.

For the Ith neuron, its weights form a (p+g+1) x 1 dimensional
weight vector Wy(n) = [wq,(n), ..., Wprgrr (M 1= 1,...,q.
Which are encompassed in the weight matrix of the network
Wn) = [Wi(n), ..., Wym]".

The output y;(n) of every neuron can be expressed as
yin) = ¢g(nety(n)), I=1,...,q (2)
where ¢ is a nonlinear activation function of a neuron and

p+g+1
net(n) = Y wyi(mPe(n) (3)

k=1

is the net input to Ith neuron node at time index n. For simplicity,
we can rewrite the above equation as follows:

net;(n) = W (n)P(n). (4)

Thus, y1(n)is as the final output of the entire RNN.
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